Skip to content
1887
Volume 61, Issue 3
  • ISSN: 2056-5135

Abstract

Organometallic catalysis has its origins in the 18th and 19th centuries. Then, the emphasis was on achieving remarkable chemical transformations, but today the focus is increasingly on sustainability. This article summarises the current promising approaches with special regard to those that have commercial potential, including non-aqueous and water immiscible solvents, modified enzymes, micellar catalysis, catalysis with low loading, metal-free catalysis and catalyst recycling. Environmental metrics, a key evaluation tool for any industrial chemical process, are used in micellar catalysis to demonstrate their usefulness, especially to achieve streamlined protocols, reduce losses and eliminate toxic materials.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X695866
2017-01-01
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/3/JMTR-61-3-Handa2.html?itemId=/content/journals/10.1595/205651317X695866&mimeType=html&fmt=ahah

References

  1. Renata H., Wang Z. J., and Arnold F. H. Angew. Chem. Int. Ed., 2015, 54, (11), 3351 LINK https://doi.org/10.1002/anie.201409470 [Google Scholar]
  2. Sharma N., Ojha H., Bharadwaj A., Pathak D. P., and Sharma R. K. RSC Adv., 2015, 5, (66), 53381 LINK https://doi.org/10.1039/c5ra06778b [Google Scholar]
  3. Prier C. K., Rankic D. A., and MacMillan D. W. C. Chem. Rev., 2013, 113, (7), 5322 LINK https://doi.org/10.1021/cr300503r [Google Scholar]
  4. Qin Y., Zhu L., and Luo S. Chem. Rev., 2017, article ASAP LINK https://doi.org/10.1021/acs.chemrev.6b00657 [Google Scholar]
  5. Falkowski J. M., Sawano T., Zhang T., Tsun G., Chen Y., Lockard J. V., and Lin W. J. Am. Chem. Soc., 2014, 136, (14), 5213 LINK https://doi.org/10.1021/ja500090y [Google Scholar]
  6. Seyferth D. Organometallics, 2001, 20, (8), 1488 LINK https://doi.org/10.1021/om0101947 [Google Scholar]
  7. Seyferth D. Organometallics, 2001, 20, (14), 2940 LINK https://doi.org/10.1021/om010439f [Google Scholar]
  8. Hunt L. B. Platinum Metals Rev., 1984, 28, (2), 76 LINK http://www.technology.matthey.com/article/28/2/76-83/ [Google Scholar]
  9. and Asefa T. “Nanocatalysis: Synthesis and Applications”, eds. Polshettiwar V., John Wiley & Sons, Inc, New Jersey, USA, 2013, 736 pp [Google Scholar]
  10. Narayanam J. M. R., and Stephenson C. R. J. Chem. Soc. Rev., 2011, 40, (1), 102 LINK https://doi.org/10.1039/B913880N [Google Scholar]
  11. Lipshutz B. H., and Ghorai S. Green Chem., 2014, 16, (8), 3660 LINK https://doi.org/10.1039/C4GC00503A [Google Scholar]
  12. Lipshutz B. H., Isley N. A., Fennewald J. C., and Slack E. D. Angew. Chem. Int. Ed., 2013, 52, (42), 10952 LINK https://doi.org/10.1002/anie.201302020 [Google Scholar]
  13. Li C.-J., and Trost B. M. Proc. Natl. Acad. Sci. USA, 2008, 105, (36), 13197 LINK https://doi.org/10.1073/pnas.0804348105 [Google Scholar]
  14. Bond G. C., Louis C., and Thompson D. T. “Catalysis by Gold”, Catalytic Science Series, Vol. 6, Imperial College Press, London, UK, 2006, pp 384 [Google Scholar]
  15. Hopkinson M. N., Tlahuext-Aca A., and Glorius F. Acc. Chem. Res., 2016, 49, (10), 2261 LINK https://doi.org/10.1021/acs.accounts.6b00351 [Google Scholar]
  16. Stahlii G. E. “Experimenta, Observationes, Animadversiones, CCC Numero, Chymicae et Physicae”, Berolini, 1731, pp 420 LINK http://dx.doi.org/10.3931/e-rara-18749 [Google Scholar]
  17. Chock P. B., Halpern J., Paulik F. E., Shupack S. I., DeAngelis T. P., and Ruff J. K. ‘Potassium Trichloro(Ethene)Platinate(II)(Zeise’s Salt)’ in “Inorganic Syntheses”, Vol. 14, eds. Wold A., John Wiley & Sons, Inc, New Jersey, USA, 1973, p. 349 LINK https://doi.org/10.1002/9780470132456.ch17 [Google Scholar]
  18. Frankland E. Q. J. Chem. Soc., 1850, 2, (3), 263 LINK https://doi.org/10.1039/QJ8500200263 [Google Scholar]
  19. Harada T. Bull. Chem. Soc. Japan, 1939, 14, (10), 472 LINK https://doi.org/10.1246/bcsj.14.472 [Google Scholar]
  20. Constable E. C., and Housecroft C. E. Chem. Soc. Rev., 2013, 42, (4), 1429 LINK https://doi.org/10.1039/C2CS35428D [Google Scholar]
  21. Ravindran V. Bull. Electrochem., 1996, 12, 248 [Google Scholar]
  22. Tissier and Grignard, C.r. Hebd. Seanc. Acad. Sci. Paris, 1901, 132, 835 LINK http://www.biodiversitylibrary.org/page/3548602#page/891/mode/1up [Google Scholar]
  23. Pope W. J., and Peachey S. J. J. Chem. Soc. Trans., 1909, 95, 571 LINK https://doi.org/10.1039/CT9099500571 [Google Scholar]
  24. Sabatier P. Ber. Dtsch. Chem. Ges., 1911, 44, (3), 1984 LINK https://doi.org/10.1002/cber.19110440303 [Google Scholar]
  25. Fischer F., and Tropsch H. Brennst. Chem., 1923, 4, 276 [Google Scholar]
  26. Fischer F., and Tropsch H. Brennst. Chem., 1926, 7, 97 [Google Scholar]
  27. Fischer F., and Tropsch H. Ber. Dtsch. Chem. Ges., 1926, 59, 830 [Google Scholar]
  28. Mars P., and van Krevelen D. W. Chem. Eng. Sci., 1954, 3, Suppl. 1, 41 LINK https://doi.org/10.1016/S0009-2509(54)80005-4 [Google Scholar]
  29. Sacken D. K. ‘Promoted Supported Silver Surface Catalyst and Process of Preparing Same’, US Patent Appl., 1954/2,671,764 [Google Scholar]
  30. Roelen O., and Feisst W. ‘Verfahren zur Katalytischen UEberfuehrung von Oxyden des Kohlenstoffs Mittels Wasserstoff in Hoehere Kohlenwasserstoffe’, German Patent, 701,846; 1941 [Google Scholar]
  31. Jira R. Angew. Chem. Int. Ed., 2009, 48, (48), 9034 LINK https://doi.org/10.1002/anie.200903992 [Google Scholar]
  32. Vaska L., and DiLuzio J. W. J. Am. Chem. Soc., 1961, 83, (12), 2784 LINK https://doi.org/10.1021/ja01473a054 [Google Scholar]
  33. Fischer E. O., and Maasböl A. Angew. Chem., 1964, 76, (14), 645 LINK https://doi.org/10.1002/ange.19640761405 [Google Scholar]
  34. Fischer E. O., and Maasböl A. Angew. Chem. Int. Ed. Engl., 1964, 3, (8), 580 LINK https://doi.org/10.1002/anie.196405801 [Google Scholar]
  35. Osborn J. A., Wilkinson G., and Young J. F. Chem. Commun. (London), 1965, (2), 17 LINK https://doi.org/10.1039/c19650000017 [Google Scholar]
  36. Chatt J., Coffey R. S., and Shaw B. L. J. Chem. Soc., 1965, 7391 LINK https://doi.org/10.1039/jr9650007391 [Google Scholar]
  37. Nozaki H., Moriuti S., Takaya H., and Noyori R. Tetrahedron Lett., 1966, 43, (7), 5239 LINK https://doi.org/10.1016/S0040-4039(01)89263-7 [Google Scholar]
  38. Dang T. P., and Kagan H. B. J. Chem. Soc. D, 1971, (10), 481 LINK https://doi.org/10.1039/C29710000481 [Google Scholar]
  39. Knowles W. S. Angew. Chem. Int. Ed., 2002, 41, (12),  1998https://doi.org/10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8 [Google Scholar]
  40. Katsuki T., and Sharpless K. B. J. Am. Chem. Soc., 1980, 102, (18), 5974 LINK https://doi.org/10.1021/ja00538a077 [Google Scholar]
  41. Berthod M., Mignani G., Woodward G., and Lemaire M. Chem. Rev., 2005, 105, (5), 1801 LINK https://doi.org/10.1021/cr040652w [Google Scholar]
  42. Anastas P., and Eghbali N. Chem. Soc. Rev., 2010, 39, (1), 301 LINK https://doi.org/10.1039/B918763B [Google Scholar]
  43. Lipshutz B. H., Ghorai S., Abela A. R., Moser R., Nishikata T., Duplais C., Krasovskiy A., Gaston R. D., and Gadwood R. C. J. Org. Chem., 2011, 76, (11), 4379 LINK https://doi.org/10.1021/jo101974u [Google Scholar]
  44. La Sorella G., Strukul G., and Scarso A. Green Chem., 2015, 17, (2), 644 LINK https://doi.org/10.1039/C4GC01368A [Google Scholar]
  45. Rogers R. D., and Seddon K. R. Science, 2003, 302, (5646), 792 LINK https://doi.org/10.1126/science.1090313 [Google Scholar]
  46. Jordan A., and Gathergood N. Chem. Soc. Rev., 2015, 44, (22), 8200 LINK https://doi.org/10.1039/C5CS00444F [Google Scholar]
  47. Dzyuba S. V., and Bartsch R. A. Angew. Chem. Int. Ed., 2003, 42, (2), 148 LINK https://doi.org/10.1002/anie.200390070 [Google Scholar]
  48. Welton T. Chem. Rev., 1999, 99, (8), 2071 LINK https://doi.org/10.1021/cr980032t [Google Scholar]
  49. Xue H., Verma R., and Shreeve J. M. J. Fluorine Chem., 2006, 127, (2), 159 LINK https://doi.org/10.1016/j.jfluchem.2005.11.007 [Google Scholar]
  50. Pollet P., Eckert C. A., and Liotta C. L. Chem. Sci., 2011, 2, (4), 609 LINK https://doi.org/10.1039/c0sc00568a [Google Scholar]
  51. Huang Y., Ureña-Benavides E. E., Boigny A. J., Campbell Z. S., Mohammed F. S., Fisk J. S., Holden B., Eckert C. A., and Liotta C. L. Sustain. Chem. Proc., 2015, 3, 13 LINK https://doi.org/10.1186/s40508-015-0040-7 [Google Scholar]
  52. Iyer P. V., and Ananthanarayan L. Process Biochem., 2008, 43, (10), 1019 LINK https://doi.org/10.1016/j.procbio.2008.06.004 [Google Scholar]
  53. Reetz M. T., ‘Recent Advances in Directed Evolution of Stereoselective Enzymes’ in “Directed Enzyme Evolution: Advances and Applications”, ed. and Alcalde M. Springer International Publishing AG, Cham, Switzerland, 2017, pp. 69– 99 LINK https://doi.org/10.1007/978-3-319-50413-1_3 [Google Scholar]
  54. Wang Z. J., Peck N. E., Renata H., and Arnold F. H. Chem. Sci., 2014, 5, (2), 598 LINK https://doi.org/10.1039/C3SC52535J [Google Scholar]
  55. Coelho P. S., Brustad E. M., Kannan A., and Arnold F. H. Science, 2013, 339, (6117), 307 LINK https://doi.org/10.1126/science.1231434 [Google Scholar]
  56. Farwell C. C., Zhang R. K., McIntosh J. A., Hyster T. K., and Arnold F. H. ACS Cent. Sci., 2015, 1, (2), 89 LINK https://doi.org/10.1021/acscentsci.5b00056 [Google Scholar]
  57. Hyster T. K., Farwell C. C., Buller A. R., McIntosh J. A., and Arnold F. H. J. Am. Chem. Soc., 2014, 136, (44), 15505 LINK https://doi.org/10.1021/ja509308v [Google Scholar]
  58. Kan S. B. J., Lewis R. D., Chen K., and Arnold F. H. Science, 2016, 354, (6315), 1048 LINK https://doi.org/10.1126/science.aah6219 [Google Scholar]
  59. Butler R. N., and Coyne A. G. Chem. Rev., 2010, 110, (10), 6302 LINK https://doi.org/10.1021/cr100162c [Google Scholar]
  60. Butler R. N., and Coyne A. G. Org. Biomol. Chem., 2016, 14, (42), 9945 LINK https://doi.org/10.1039/C6OB01724J [Google Scholar]
  61. Narayan S., Muldoon J., Finn M. G., Fokin V. V., Kolb H. C., and Sharpless K. B. Angew. Chem. Int. Ed., 2005, 44, (21), 3275 LINK https://doi.org/10.1002/anie.200462883 [Google Scholar]
  62. Kitanosono T., Zhu L., Liu C., Xu P., and Kobayashi S. J. Am. Chem. Soc., 2015, 137, (49), 15422 LINK https://doi.org/10.1021/jacs.5b11418 [Google Scholar]
  63. Fihri A., Luart D., Len C., Solhy A., Chevrin C., and Polshettiwar V. Dalton Trans., 2011, 40, (13), 3116 LINK https://doi.org/10.1039/c0dt01637c [Google Scholar]
  64. Fu H. Y., Chen L., and Doucet H. J. Org. Chem., 2012, 77, (9), 4473 LINK https://doi.org/10.1021/jo300528b [Google Scholar]
  65. Dong J. J., Roger J., Požgan F., and Doucet H. Green Chem., 2009, 11, (11), 1832 LINK https://doi.org/10.1039/b915290n [Google Scholar]
  66. Grubbs R. H., and Chang S. Tetrahedron, 1998, 54, (18), 4413 LINK https://doi.org/10.1016/S0040-4020(97)10427-6 [Google Scholar]
  67. Kadyrov R. Chem. Eur. J., 2013, 19, (3), 1002 LINK https://doi.org/10.1002/chem.201202207 [Google Scholar]
  68. Handa S., Andersson M. P., Gallou F., Reilly J., and Lipshutz B. H. Angew. Chem. Int. Ed., 2016, 55, (16), 4914 LINK https://doi.org/10.1002/anie.201510570 [Google Scholar]
  69. Handa S., Wang Y., Gallou F., and Lipshutz B. H. Science, 2015, 349, (6252), 1087 LINK https://doi.org/10.1126/science.aac6936 [Google Scholar]
  70. Leadbeater N. E., and Marco M. J. Org. Chem., 2003, 68, (14), 5660 LINK https://doi.org/10.1021/jo034230i [Google Scholar]
  71. Arvela R. K., Leadbeater N. E., Sangi M. S., Williams V. A., Granados P., and Singer R. D. J. Org. Chem., 2005, 70, (1), 161 LINK https://doi.org/10.1021/jo048531j [Google Scholar]
  72. Liu X., and Dai L. Nat. Rev. Mater., 2016, 1, 16064 LINK https://doi.org/10.1038/natrevmats.2016.64 [Google Scholar]
  73. Machajewski T. D., and Wong C. H. Angew. Chem. Int. Ed., 2000, 39, (8), 1352 LINK https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J [Google Scholar]
  74. Wiesner M., Upert G., Angelici G., and Wennemers H. J. Am. Chem. Soc., 2010, 132, (1), 6 LINK https://doi.org/10.1021/ja9068112 [Google Scholar]
  75. Ghosh I., Marzo L., Das A., Shaikh R., and König B. Acc. Chem. Res., 2016, 49, (8), 1566 LINK https://doi.org/10.1021/acs.accounts.6b00229 [Google Scholar]
  76. Li L., Mu X., Liu W., Wang Y., Mi Z., and Li C.-J. J. Am. Chem. Soc., 2016, 138, (18), 5809 LINK https://doi.org/10.1021/jacs.6b02782 [Google Scholar]
  77. Bailey D. C., and Langer S. H. Chem. Rev., 1981, 81, (2), 109 LINK https://doi.org/10.1021/cr00042a001 [Google Scholar]
  78. Vural Gürsel I., Noël T., Wang Q., and Hessel V. Green Chem., 2015, 17, (4), 2012 LINK https://doi.org/10.1039/C4GC02160F [Google Scholar]
  79. Sun Z., Chen J., and Tu T. Green Chem., 2017, 19, (3), 789 LINK https://doi.org/10.1039/C6GC02591A [Google Scholar]
  80. Zeng T., Yang L., Hudson R., Song G., Moores A. R., and Li C.-J. Org. Lett., 2011, 13, (3), 442 LINK https://doi.org/10.1021/ol102759w [Google Scholar]
  81. Assaf G., Checksfield G., Critcher D., Dunn P. J., Field S., Harris L. J., Howard R. M., Scotney G., Scott A., Mathew S., Walker G. M. H., and Wilder A. Green Chem., 2012, 14, (1), 123 LINK https://doi.org/10.1039/C1GC15921F [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X695866
Loading
/content/journals/10.1595/205651317X695866
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error