Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

Green ammonia, produced through renewable energy-powered electrochemical and thermal processes, is emerging as a promising candidate to replace fossil fuel-based ammonia in the fertiliser, transportation and energy sectors. This paper provides an overview of the production methods, utilisation methods and technological advancements for green ammonia. The electrochemical production and Haber-Bosch with renewable hydrogen and energy are discussed in detail highlighting recent material advances. Green ammonia utilisation methods are discussed with direct use cases such as ammonia combustion and direct ammonia fuel cells examined. Green ammonia’s potential as a carbon-free hydrogen carrier is also discussed in regards to ammonia cracking for effective hydrogen recovery. This paper concludes that green ammonia has the potential to play a significant role in the transition to a sustainable energy system and offers new opportunities for the fertiliser, transportation and energy industries.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16946999404542
2023-09-14
2024-09-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Tao_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16946999404542&mimeType=html&fmt=ahah

References

  1. S. Budinis, A. Gouy, P. Levi, H. Mandová, T. Vass, ‘Ammonia Technology Roadmap: Towards More Sustainable Nitrogen Fertiliser Production’, International Energy Agency, Paris, France, October, 2021 LINK https://www.iea.org/reports/ammonia-technology-roadmap [Google Scholar]
  2. R. Lan, J. T. S. Irvine, S. Tao, Int. J. Hydrogen Energy, 2012, 37, (2), 1482 LINK https://doi.org/10.1016/j.ijhydene.2011.10.004 [Google Scholar]
  3. K. Smart, Johnson Matthey Technol. Rev., 2022, 66, (3), 230 LINK https://doi.org/10.1595/205651322x16334238659301 [Google Scholar]
  4. J. Brightling, Johnson Matthey Technol. Rev., 2018, 62, (1), 32 LINK https://doi.org/10.1595/205651318x696341 [Google Scholar]
  5. N. Salmon, R. Bañares-Alcántara, Sustain. Energy Fuels, 2021, 5, (11), 2814 LINK https://doi.org/10.1039/d1se00345c [Google Scholar]
  6. T. Ayvalı, S. C. E. Tsang, T. Van Vrijaldenhoven, Johnson Matthey Technol. Rev., 2021, 65, (2), 291 LINK https://doi.org/10.1595/205651321x16127941688787 [Google Scholar]
  7. T. Ayvalı, S. C. E. Tsang, T. Van Vrijaldenhoven, Johnson Matthey Technol. Rev., 2021, 65, (2), 275 LINK https://doi.org/10.1595/205651321x16043240667033 [Google Scholar]
  8. H. Liu, ‘Ruthenium Based Ammonia Synthesis Catalysts’, in “Ammonia Synthesis Catalysts: Innovation, Practice”, World Scientific Publishing Co Pte Ltd, Singapore,Chemical Industry Press, Beijing, China, 2013, pp. 425542 LINK https://doi.org/10.1142/9789814355780_0006 [Google Scholar]
  9. J. Humphreys, R. Lan, S. Tao, Adv. Energy Sustain. Res., 2020, 2, (1), 2000043 LINK https://doi.org/10.1002/aesr.202000043 [Google Scholar]
  10. J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci., 2008, 1, (10), 636 LINK https://doi.org/10.1038/ngeo325 [Google Scholar]
  11. D. R. MacFarlane, P. V. Cherepanov, J. Choi, B. H. R. Suryanto, R. Y. Hodgetts, J. M. Bakker, F. M. Ferrero Vallana, A. N. Simonov, Joule, 2020, 4, (6), 1186 LINK https://doi.org/10.1016/j.joule.2020.04.004 [Google Scholar]
  12. H. Ronduda, M. Zybert, W. Patkowski, A. Ostrowski, P. Jodłowski, D. Szymański, W. Raróg-Pilecka, Int. J. Hydrogen Energy, 2022, 47, (84), 35689 LINK https://doi.org/10.1016/j.ijhydene.2022.08.144 [Google Scholar]
  13. C. Song, C. Song, V. Subramani, ‘Introduction to Hydrogen, Syngas Production, Purification Technologies’, in “Hydrogen, Syngas Production, Purification Technologies”, eds. K. Liu, John Wiley & Sons Inc, Hoboken, USA, 2009, pp. 113 LINK https://doi.org/10.1002/9780470561256.ch1 [Google Scholar]
  14. R. W. Howarth, M. Z. Jacobson, Energy Sci. Eng., 2021, 9, (10), 1676 LINK https://doi.org/10.1002/ese3.956 [Google Scholar]
  15. G. Jeerh, M. Zhang, S. Tao, J. Mater. Chem. A, 2021, 9, (2), 727 LINK https://doi.org/10.1039/d0ta08810b [Google Scholar]
  16. ‘Technology: The Green Ammonia Landscape’, Eneus Energy, Edinburgy, UK:https://www.eneusenergy.com/technology/ (Accessed on 7th July 2024) [Google Scholar]
  17. B. Fastrup, H. N. Nielsen, Catal. Letters, 1992, 14, (2), 233 LINK https://doi.org/10.1007/bf00765236 [Google Scholar]
  18. J. Humphreys, R. Lan, S. Chen, M. Walker, Y. Han, S. Tao, Appl. Catal. B: Environ., 2021, 285, 119843 LINK https://doi.org/10.1016/j.apcatb.2020.119843 [Google Scholar]
  19. H. Liu, Chinese J. Catal., 2014, 35, (10), 1619 LINK https://doi.org/10.1016/s1872-2067(14)60118-2 [Google Scholar]
  20. O. Štěpán, B. Štverák, Collect. Czech. Chem. Commun., 1971, 36, (6), 2358 LINK https://doi.org/10.1135/cccc19712358 [Google Scholar]
  21. M. Boudart, S. B. T. Khammoum, ‘Abstracts of Papers: Ammonia Synthesis on Supported Iron Catalysts’, 164th National Meeting of the American Chemical Society, New York, USA, 1972, 15 [Google Scholar]
  22. D. Zubritsk, Zhurnal Prikl. Khimii, 1973, 46, (2), 329 [Google Scholar]
  23. M. G. Berengar, L. A. Rudnitskij, P. D. Rabina, L. D. Kuznetsove, Dok. Akad. Nauk SSSR, 1974, 214, (3), 601 [Google Scholar]
  24. V. S. Badik, Yu. A. Lyubchenko, A. N. Sergaeva, L. M. Dmitrenko, J. App. Chem. USSR, 1974, 47, (10), 2239 [Google Scholar]
  25. O. S. Dvornik, O. A. Streltsov, V. L. Chernobrivets, Ukrain. Khim. Zhur., 1975, 41, (5), 544 [Google Scholar]
  26. G. L. Bridger, G. R. Pole, A. W. Beinlich, Chem. Eng. Prog., 1947, 43, (6), 291 [Google Scholar]
  27. X. Yu, B. Lin, J. Lin, R. Wang, K. Wei, J. Rare Earths, 2008, 26, (5), 711 LINK https://doi.org/10.1016/s1002-0721(08)60168-4 [Google Scholar]
  28. P. Wang, H. Xie, J. Guo, Z. Zhao, X. Kong, W. Gao, F. Chang, T. He, G. Wu, M. Chen, L. Jiang, P. Chen, Angew. Chem. Int. Ed., 2017, 56, (30), 8716 LINK https://doi.org/10.1002/anie.201703695 [Google Scholar]
  29. W. Gao, J. Guo, P. Wang, Q. Wang, F. Chang, Q. Pei, W. Zhang, L. Liu, P. Chen, Nat. Energy, 2018, 3, (12), 1067 LINK https://doi.org/10.1038/s41560-018-0268-z [Google Scholar]
  30. J. Humphreys, R. Lan, S. Chen, S. Tao, J. Mater. Chem. A, 2020, 8, (32), 16676 LINK https://doi.org/10.1039/d0ta05238h [Google Scholar]
  31. M. Kitano, Y. Inoue, M. Sasase, K. Kishida, Y. Kobayashi, K. Nishiyama, T. Tada, S. Kawamura, T. Yokoyama, M. Hara, H. Hosono, Angew. Chem. Int. Ed., 2018, 57, (10), 2648 LINK https://doi.org/10.1002/anie.201712398 [Google Scholar]
  32. M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, H. Hosono, Nat. Chem., 2012, 4, (11), 934 LINK https://doi.org/10.1038/nchem.1476 [Google Scholar]
  33. Y. Lu, J. Li, T.-N. Ye, Y. Kobayashi, M. Sasase, M. Kitano, H. Hosono, ACS Catal., 2018, 8, (12), 11054 LINK https://doi.org/10.1021/acscatal.8b03743 [Google Scholar]
  34. H. Ronduda, M. Zybert, W. Patkowski, A. Tarka, A. Ostrowski, W. Raróg-Pilecka, J. Taiwan Inst. Chem. Eng., 2020, 114, 241 LINK https://doi.org/10.1016/j.jtice.2020.09.020 [Google Scholar]
  35. X. Zhang, L. Liu, J. Wang, X. Ju, R. Si, J. Feng, J. Guo, P. Chen, J. Catal., 2023, 417, 382 LINK https://doi.org/10.1016/j.jcat.2022.12.016 [Google Scholar]
  36. H. Ronduda, M. Zybert, W. Patkowski, D. Moszyński, A. Albrecht, K. Sobczak, A. Małolepszy, W. Raróg-Pilecka, RSC Adv., 2023, 13, (7), 4787 LINK https://doi.org/10.1039/d3ra00133d [Google Scholar]
  37. H. Ronduda, M. Zybert, A. Dziewulska, W. Patkowski, K. Sobczak, A. Ostrowski, W. Raróg-Pilecka, Surf. Interfaces, 2023, 36, 102530 LINK https://doi.org/10.1016/j.surfin.2022.102530 [Google Scholar]
  38. J. Feng, L. Liu, X. Zhang, J. Wang, X. Ju, R. Li, J. Guo, T. He, P. Chen, Catal. Sci. Technol., 2023, 13, (3), 844 LINK https://doi.org/10.1039/d2cy02035a [Google Scholar]
  39. I. Luz, S. Parvathikar, M. Carpenter, T. Bellamy, K. Amato, J. Carpenter, M. Lail, Catal. Sci. Technol., 2020, 10, (1), 105 LINK https://doi.org/10.1039/c9cy01303b [Google Scholar]
  40. M. Karolewska, E. Truszkiewicz, M. Wściseł, B. Mierzwa, L. Kępiński, W. Raróg-Pilecka, J. Catal., 2013, 303, 130 LINK https://doi.org/10.1016/j.jcat.2013.03.005 [Google Scholar]
  41. H. Shen, C. Choi, J. Masa, X. Li, J. Qiu, Y. Jung, Z. Sun, Chem, 2021, 7, (7), 1708 LINK https://doi.org/10.1016/j.chempr.2021.01.009 [Google Scholar]
  42. F. Jiao, B. Xu, Adv. Mater., 2019, 31, (31), 1805173 LINK https://doi.org/10.1002/adma.201805173 [Google Scholar]
  43. R. Zhao, H. Xie, L. Chang, X. Zhang, X. Zhu, X. Tong, T. Wang, Y. Luo, P. Wei, Z. Wang, X. Sun, EnergyChem, 2019, 1, (2), 100011 LINK https://doi.org/10.1016/j.enchem.2019.100011 [Google Scholar]
  44. I. A. Amar, R. Lan, C. T. G. Petit, S. Tao, J. Solid State Electrochem., 2011, 15, (9), 1845 LINK https://doi.org/10.1007/s10008-011-1376-x [Google Scholar]
  45. H.-L. Du, M. Chatti, R. Y. Hodgetts, P. V. Cherepanov, C. K. Nguyen, K. Matuszek, D. R. MacFarlane, A. N. Simonov, Nature, 2022, 609, (7928), 722 LINK https://doi.org/10.1038/s41586-022-05108-y [Google Scholar]
  46. S. Li, Y. Zhou, K. Li, M. Saccoccio, R. Sažinas, S. Z. Andersen, J. B. Pedersen, X. Fu, V. Shadravan, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Joule, 2022, 6, (9), 2083 LINK https://doi.org/10.1016/j.joule.2022.07.009 [Google Scholar]
  47. C. Zhang, S. Liu, T. Chen, Z. Li, J. Hao, Chem. Commun., 2019, 55, (51), 7370 LINK https://doi.org/10.1039/c9cc03221e [Google Scholar]
  48. L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen, L. Zhang, Angew. Chem. Int. Ed., 2020, 59, (27), 10888 LINK https://doi.org/10.1002/anie.202003518 [Google Scholar]
  49. Y. Liu, X. Kong, X. Guo, Q. Li, J. Ke, R. Wang, Q. Li, Z. Geng, J. Zeng, ACS Catal., 2020, 10, (2), 1077 LINK https://doi.org/10.1021/acscatal.9b03864 [Google Scholar]
  50. T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. Int. Ed., 2019, 58, (51), 18449 LINK https://doi.org/10.1002/anie.201911153 [Google Scholar]
  51. J. Cai, Y. Wei, A. Cao, J. Huang, Z. Jiang, S. Lu, S.-Q. Zang, Appl. Catal. B: Environ., 2022, 316, 121683 LINK https://doi.org/10.1016/j.apcatb.2022.121683 [Google Scholar]
  52. S. Liu, T. Qian, M. Wang, H. Ji, X. Shen, C. Wang, C. Yan, Nat. Catal., 2021, 4, (4), 322 LINK https://doi.org/10.1038/s41929-021-00599-w [Google Scholar]
  53. Y. Lv, Y. Wang, M. Yang, Z. Mu, S. Liu, W. Ding, M. Ding, J. Mater. Chem. A, 2021, 9, (3), 1480 LINK https://doi.org/10.1039/d0ta11797h [Google Scholar]
  54. Z. Wei, Z. Gu, Y. Zhang, K. Luo, S. Zhao, Appl. Catal. B: Environ., 2023, 320, 121915 LINK https://doi.org/10.1016/j.apcatb.2022.121915 [Google Scholar]
  55. J. Lim, C.-Y. Liu, J. Park, Y.-H. Liu, T. P. Senftle, S. W. Lee, M. C. Hatzell, ACS Catal., 2021, 11, (12), 7568 LINK https://doi.org/10.1021/acscatal.1c01413 [Google Scholar]
  56. F. Schüth, R. Palkovits, R. Schlögl, D. S. Su, Energy Environ. Sci., 2012, 5, (4), 6278 LINK https://doi.org/10.1039/c2ee02865d [Google Scholar]
  57. K. E. Lamb, M. D. Dolan, D. F. Kennedy, Int. J. Hydrogen Energy, 2019, 44, (7), 3580 LINK https://doi.org/10.1016/j.ijhydene.2018.12.024 [Google Scholar]
  58. K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, ChemCatChem, 2016, 8, (18), 2988 LINK https://doi.org/10.1002/cctc.201600610 [Google Scholar]
  59. K. Okura, K. Miyazaki, H. Muroyama, T. Matsui, K. Eguchi, RSC Adv., 2018, 8, (56), 32102 LINK https://doi.org/10.1039/c8ra06100a [Google Scholar]
  60. H. Tabassum, S. Mukherjee, J. Chen, D. Holiharimanana, S. Karakalos, X. Yang, S. Hwang, T. Zhang, B. Lu, M. Chen, Z. Tang, E. A. Kyriakidou, Q. Ge, G. Wu, Energy Environ. Sci., 2022, 15, (10), 4190 LINK https://doi.org/10.1039/d1ee03730g [Google Scholar]
  61. M. Pinzón, O. Avilés-García, A. R. de la Osa, A. de Lucas-Consuegra, P. Sánchez, A. Romero, Sustain. Chem. Pharm., 2022, 25, 100615 LINK https://doi.org/10.1016/j.scp.2022.100615 [Google Scholar]
  62. G. Li, X. Yu, F. Yin, Z. Lei, H. Zhang, X. He, Catal. Today, 2022, 402, 45 LINK https://doi.org/10.1016/j.cattod.2022.02.020 [Google Scholar]
  63. M. El-Shafie, S. Kambara, Y. Hayakawa, Catal. Today, 2022, 397399, 103 LINK https://doi.org/10.1016/j.cattod.2021.11.022 [Google Scholar]
  64. T. A. Le, Y. Kim, H. W. Kim, S.-U. Lee, J.-R. Kim, T.-W. Kim, Y.-J. Lee, H.-J. Chae, Appl. Catal. B: Environ., 2021, 285, 119831 LINK https://doi.org/10.1016/j.apcatb.2020.119831 [Google Scholar]
  65. T. Furusawa, H. Kuribara, K. Kimura, T. Sato, N. Itoh, Ind. Eng. Chem. Res., 2020, 59, (41), 18460 LINK https://doi.org/10.1021/acs.iecr.0c03112 [Google Scholar]
  66. M. Pinzón, A. Romero, A. de Lucas Consuegra, A. R. de la Osa, P. Sánchez, J. Ind. Eng. Chem., 2021, 94, 326 LINK https://doi.org/10.1016/j.jiec.2020.11.003 [Google Scholar]
  67. X. Duan, G. Qian, X. Zhou, Z. Sui, D. Chen, W. Yuan, Appl. Catal. B: Environ., 2011, 101, (3–4), 189 LINK https://doi.org/10.1016/j.apcatb.2010.09.017 [Google Scholar]
  68. K. Ogasawara, T. Nakao, K. Kishida, T.-N. Ye, Y. Lu, H. Abe, Y. Niwa, M. Sasase, M. Kitano, H. Hosono, ACS Catal., 2021, 11, (17), 11005 LINK https://doi.org/10.1021/acscatal.1c01934 [Google Scholar]
  69. Y. Im, H. Muroyama, T. Matsui, K. Eguchi, Int. J. Hydrogen Energy, 2020, 45, (51), 26979 LINK https://doi.org/10.1016/j.ijhydene.2020.07.014 [Google Scholar]
  70. S. Sayas, N. Morlanés, S. P. Katikaneni, A. Harale, B. Solami, J. Gascon, Catal. Sci. Technol., 2020, 10, (15), 5027 LINK https://doi.org/10.1039/d0cy00686f [Google Scholar]
  71. J. A. Andersen, J. M. Christensen, M. Østberg, A. Bogaerts, A. D. Jensen, Int. J. Hydrogen Energy, 2022, 47, (75), 32081 LINK https://doi.org/10.1016/j.ijhydene.2022.07.102 [Google Scholar]
  72. M. Akiyama, K. Aihara, T. Sawaguchi, M. Matsukata, M. Iwamoto, Int. J. Hydrogen Energy, 2018, 43, (31), 14493 LINK https://doi.org/10.1016/j.ijhydene.2018.06.022 [Google Scholar]
  73. L. Wang, Y. Zhao, C. Liu, W. Gong, H. Guo, Chem. Commun., 2013, 49, (36), 3787 LINK https://doi.org/10.1039/c3cc41301b [Google Scholar]
  74. L. Wang, Y. Yi, H. Guo, X. Du, B. Zhu, Y. Zhu, Catalysts, 2019, 9, (2), 107 LINK https://doi.org/10.3390/catal9020107 [Google Scholar]
  75. D. Erdemir, I. Dincer, Int. J. Energy Res., 2020, 45, (4), 4827 LINK https://doi.org/10.1002/er.6232 [Google Scholar]
  76. L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Chem. Rev., 2019, 119, (19), 10916 LINK https://doi.org/10.1021/acs.chemrev.9b00202 [Google Scholar]
  77. R. Jin, Y. Liu, Y. Wang, W. Cen, Z. Wu, H. Wang, X. Weng, Appl. Catal. B: Environ., 2014, 148149, 582 LINK https://doi.org/10.1016/j.apcatb.2013.09.016 [Google Scholar]
  78. S. Ma, X. Zhao, Y. Li, T. Zhang, F. Yuan, X. Niu, Y. Zhu, Appl. Catal. B: Environ., 2019, 248, 226 LINK https://doi.org/10.1016/j.apcatb.2019.02.015 [Google Scholar]
  79. M.-C. Chiong, C. T. Chong, J.-H. Ng, S. Mashruk, W. W. F. Chong, N. A. Samiran, G. R. Mong, A. Valera-Medina, Energy Convers. Manag., 2021, 244, 114460 LINK https://doi.org/10.1016/j.enconman.2021.114460 [Google Scholar]
  80. C. Lhuillier, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, Proc. Combust. Inst., 2021, 38, (4), 5859 LINK https://doi.org/10.1016/j.proci.2020.08.058 [Google Scholar]
  81. M. I. L. Galdo, L. Castro-Santos, C. G. Rodriguez Vidal, J. Mar. Sci. Eng., 2020, 8, (2), 109 LINK https://doi.org/10.3390/jmse8020109 [Google Scholar]
  82. M. C. Franco, R. C. Rocha, M. Costa, M. Yehia, Proc. Combust. Inst., 2021, 38, (4), 5129 LINK https://doi.org/10.1016/j.proci.2020.06.141 [Google Scholar]
  83. X. Zhu, A. A. Khateeb, T. F. Guiberti, W. L. Roberts, Proc. Combust. Inst., 2021, 38, (4), 5155 LINK https://doi.org/10.1016/j.proci.2020.06.275 [Google Scholar]
  84. R. Abbasi, B. P. Setzler, J. Wang, Y. Zhao, T. Wang, S. Gottesfeld, Y. Yan, Curr. Opin. Electrochem., 2020, 21, 335 LINK https://doi.org/10.1016/j.coelec.2020.03.021 [Google Scholar]
  85. R. Lan, S. Tao, Electrochem. Solid-State Lett., 2010, 13, (8), B 83 LINK https://doi.org/10.1149/1.3428469 [Google Scholar]
  86. Y. Zhao, B. P. Setzler, J. Wang, J. Nash, T. Wang, B. Xu, Y. Yan, Joule, 2019, 3, (10), 2472 LINK https://doi.org/10.1016/j.joule.2019.07.005 [Google Scholar]
  87. F. Zhong, S. Yang, C. Chen, H. Fang, K. Chen, C. Zhou, L. Lin, Y. Luo, C. Au, L. Jiang, J. Power Sources, 2022, 520, 230847 LINK https://doi.org/10.1016/j.jpowsour.2021.230847 [Google Scholar]
  88. Y. Pan, H. Zhang, K. Xu, Y. Zhou, B. Zhao, W. Yuan, K. Sasaki, Y. Choi, Y. Chen, M. Liu, Appl. Catal. B: Environ., 2022, 306, 121071 LINK https://doi.org/10.1016/j.apcatb.2022.121071 [Google Scholar]
  89. G. Jeerh, P. Zou, M. Zhang, S. Tao, Appl. Catal. B: Environ., 2022, 319, 121919 LINK https://doi.org/10.1016/j.apcatb.2022.121919 [Google Scholar]
  90. Y. Li, H. S. Pillai, T. Wang, S. Hwang, Y. Zhao, Z. Qiao, Q. Mu, S. Karakalos, M. Chen, J. Yang, D. Su, H. Xin, Y. Yan, G. Wu, Energy Environ. Sci., 2021, 14, (3), 1449 LINK https://doi.org/10.1039/d0ee03351k [Google Scholar]
  91. N. Hanada, Y. Kohase, K. Hori, H. Sugime, S. Noda, Electrochim. Acta, 2020, 341, 136027 LINK https://doi.org/10.1016/j.electacta.2020.136027 [Google Scholar]
  92. S. Morita, E. Kudo, R. Shirasaka, M. Yonekawa, K. Nagai, H. Ota, M. N.- Gamo, H. Shiroishi, J. Electroanal. Chem., 2016, 762, 29 LINK https://doi.org/10.1016/j.jelechem.2015.12.017 [Google Scholar]
  93. H. Zhang, Y. Wang, Z. Wu, D. Y. C. Leung, Energy Proc., 2017, 142, 1539 LINK https://doi.org/10.1016/j.egypro.2017.12.605 [Google Scholar]
  94. F. Zhong, Y. Zhang, Y. Luo, C. Chen, H. Fang, K. Chen, C. Zhou, L. Lin, C. Au, L. Jiang, J. Power Sources, 2022, 524, 231078 LINK https://doi.org/10.1016/j.jpowsour.2022.231078 [Google Scholar]
  95. G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, J. Power Sources, 2007, 173, (1), 189 LINK https://doi.org/10.1016/j.jpowsour.2007.05.002 [Google Scholar]
  96. S. Gottesfeld, J. Electrochem. Soc., 2018, 165, (15), J 3405 LINK https://doi.org/10.1149/2.0431815jes [Google Scholar]
  97. M. Zhang, J. Zhang, G. Jeerh, P. Zou, B. Sun, M. Walker, K. Xie, S. Tao, J. Mater. Chem. A, 2022, 10, (36), 18701 LINK https://doi.org/10.1039/d2ta04129d [Google Scholar]
/content/journals/10.1595/205651324X16946999404542
Loading
/content/journals/10.1595/205651324X16946999404542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test