The Thermodynamic Properties of Platinum on ITS-90
Journal Archive
The Thermodynamic Properties of Platinum on ITS-90
Platinum exists in a face–centred cubic structure with a lattice parameter at 20°C of 0.39235 nm and a density of 21.45 g/cm3 (1,2). The freezing point is a proposed secondary fixed point on the International Temperature Scale ITS–90 at 1768.1°C (3). Wherever possible values have been corrected to the currently accepted atomic weight of 195.08 (4) and to the ITS–90 temperature scale (5–9), including the further correction to this scale between 630.615 and 1064.18°C (10–12). Previous assessments for platinum were performed by Hultgren and co–workers (13) and by Furukawa, Reilly and Gallagher (14).
Solid
Selected specific heat measurements below 30 K lead to the following values of the electronic specific heat coefficient (γ) and the Debye temperature (θD), as shown in Table I.
Table I
Electronic Specific Heat Coefficients and Debye Temperatures
γ, mJ/mol K2 | θD, K | ||
---|---|---|---|
Dixon et al(15) | 1.242 K | 6.507 ± 0.006 | 234.9 ± 0.4 |
Dixon, Hoare and Holden (16) | 1.24.2 K | 6.517 ± 0.012 | 235.5 ± 1.6 |
Shoemake and Rayne (17) | 1.2-100 K | 6.56 ± 0.03 | 234.4 ± 2.5 |
Berg (18) | 2.6-20.3 K | 6.59 ± 0.03 | 240.1 ± 2.3 |
Boerstoel, Zwart and Hansen (19) | 1.2-30 K | 6.54 ± 0.02 | 237.0 ± 0.5 |
Recommended | 6.54 ± 0.03 | 236 ± 2 |
On average the measurements of Berg, and Boerstoel, Zwart and Hansen agree with the selected curve to 0.6 per cent while earlier measurements of Clusius, Losa and Franzosini (20) 11–274 K are from 7 per cent high to 3 per cent low in this region. Other measurements were rejected in the previous assessments.
Between 30 and 300 K selected values are based on the specific heat measurements of Clusius, Losa and Franzosini (20) 11–274 K and Yokokawa and Takahashi (21) 81–983 K with preference being given to the latter above 80 K and which on average agree with the selected curve to 0.3 per cent, while the former measurements are up to 1.6 per cent too high at the highest temperatures measured. The derived value of the enthalpy H°298.15 – H°0 is in exact agreement with that selected by Yokokawa and Takahashi, but the entropy S°298.15 is slightly higher due mainly to the adoption of a different value of entropy at 80 K, see Table II and Figure 1.
Table II
Low Temperature Specific Heat Data
Fig. 1
Low temperature specific heats of platinum from 0 to 300 K
(1) Present Beleoted values
(2)Furukawa, Reilly and Gallagher (14)
Percentage deviation = 100 x (C°p selected - C°p calculated)/C°p, calculated
In the high temperature region values are based on the enthalpy measurements of Kendall, Orr and Hultgren (22) taken between 339 and 1436 K and Macleod (23) 401–1633 K, and the specific heat measurements of Yokokawa and Takahashi (21) 81–983 K, and Righini and Rosso (24) 1000–2000 K. These two different measuring techniques were reconciled by first separately fitting the enthalpy data to the Maier–Kelley equation (25) and then differentiating at sufficient intervals in order to give approximately equal weight to the four sets of data. However derived values of Kendall, Orr and Hultgren above 1200 Kwere not used since they deviate by up to 1.4 per cent low above this temperature, while similar values for Macleod above 1400 K were not used since they deviate by up to 1.6 per cent low. The selected values were fitted to the following recommended equation, which has an overall accuracy of 0.3 per cent (± 0.09 J/mol K):
Specific heat measurements of Yeh and Brooks (26) taken between 350 and 1200 K are on average 2 per cent higher than the selected curve, while those of Wheeler (27) 938–1368 K are 4 per cent higher and those of Vollmer and Kohlhaas (28) 298–1900 K are 2 per cent lower. Specific heat measurements using the modulation technique tend to give values rising sharply above 1600 K, with those of Kraftmakher and Lanina (29, 30), taken between 1000 and 2000 K, being up to 12 per cent high, those of Seville (31) 1280–1860 K (read from graph) up to 6 per cent high and those of Zinov'ev, Korshunov and Gel'd (32) 1100–1900 K (read from graph) up to 14 per cent high. Smoothed true specific heat values, calculated from older mean specific heat measurements, agree closely with the recommended values up to 1300 K, but above this temperature the values of White (33) 373–1573 K are up to 1 per cent low and the values of Jaeger and Rosenbohm (34) 484–1877 K and Jaeger, Rosenbohm and Bottema (35) 681–1664 K are up to 3 per cent low, see Table III and also Figure 2.
Table III
High Temperature Data
Fig. 2
High temperature specific heats of platinum from 300 K to the melting point
(1)Present selected values
(2)Hultgren and others (13) and references therein
(3)Vollmer and Kohlhaas (28)
(4)Yeh and Brooks (26)
(5)Krhakher and Lanina (29,30)
(6)Seville (31)
(7)Zinov'ev, Kurahunov and Gel'd (32)
(8)Wheeler (27)
Percentage deviation = 100 x (C°p selected - C°p calculated)/C°p, calculated
Liquid
The liquid enthalpy measurements of Chaudhuri and co–workers (36) 2204–2649 K were fitted to the following equation which is relative to the solid at 298.15 K and which has an overall accuracy of 1.2 per cent (± 1180 J/mol):
This leads to a constant specific heat value of 36.4 ± 2.2 J/mol K, a value for the heat of fusion of 21.33 ± 1.19 kJ/mol and an entropy of fusion of 10.45 ± 0.58 J/mol K, see Table III. Rapid pulse heating measurements by Gathers, Shaner and Hodgson (37) 2041–8000 K lead to a higher specific heat of 49 J/mol K and an approximate heat of fusion of 27 ± 6 kJ/mol; while using a similar technique Lebedev, Sawatimskii and Smirnov (38) obtained a heat of fusion of 25 kJ/mol. Improvements in the rapid pulse heating method are eliminating the discrepancies obtained between this technique and drop calorimetry.
Gas
Thermodynamic properties of the monatomic gas were calculated from the 201 energy levels listed by Blaise and colleagues (39) using the method outlined by Kolsky, Gilmer and Gilles (40) together with the 1986 fundamental constants (41) except for the Gas Constant and the Boltzmann Constant which are from the later measurements of Moldover and coworkers (42). Values were corrected to the recommended standard state pressure of one bar (43).
Vapour Pressure
Third Law heats of sublimation were calculated from the following Langmuir determinations, see Tables IV and V.
Table IV
Third Law Heats of Sublimation
ΔH°298.15 KJ/mol | ||
---|---|---|
Jones, Langmuir and Mackay (44) | 1697-2034 K | 564.8 ± 1.7 |
aDreger and Margrave (45) | 1573-1785 K | 566.5 ± 1.4 |
bHarnpson and Walker (46) | 918-2049 K | 565.7 ± 0.5 |
cKoch and co-workers (47) | 2032-2445 K | 559.5 ± 1.1 |
dPlante, Sessoms and Fitch (48) | 1675-1977 K | 564.4 ± 0.2 |
Recommended | 565 ± 2 |
Table V
Vapour Pressure Data Pt(s, 1) = Pt (g, bar)
The recommended value gives most weight to the measurements of Hampson and Walker and Plante, Sessoms and Fitch. Torsion measurements of Peleg and Alcock (49) 1800–2300 K were unfortunately shown only in the form of a graph but lead to a heat of sublimation about 5 kJ/mol higher than the recommended value. However Plante, Sessoms and Fitch have criticised the temperature measuring technique used in these experiments. Mass spectrometric measurements of Norman, Staley and Bell (50) 1752–2045 K lead to a second law heat of sublimation of 538 ± 17 kJ/mol.
Fundamental Constants
Avogadro’s number = 6.0221367 (36) x 1023/mol (41)
Velocity of light = 299,792,458 m/s (41)
Planck’s constant = 6.66260755 (40) x 10-34 Js (41)
Gas constant = 8.314471 (14) J/mol K (42)
Boltzmann constant = 1.3806513 (25) x 10-23 J/K (42)
References
- 1
J. Donohue, “ The Structures of the Elements ”, John Wiley and Sons, New York, 1974
- 2
J. W. Arblaster, Platinum Metals Rev., 1989, 33, ( 1 ), 14
- 3
R. E. Bedford, Private communication, Aug. 1992
- 4
Commission on Atomic Weights and Isotopic Abundances, PureAppl Chem., 1992, 64, 1519
- 5
T. B. Douglas F. Res. Natl. Bur. Stand., 1969, 73A, 451
- 6
H. Preston-Thomas, Metrologia, 1990, 27, 3 and 107
- 7
M. McGlashan F Chem. Thermodyn., 1990, 22, 653
- 8
R. L. Rusby, F. Chem. Thermodyn., 1991, 23, 1153
- 9
R. N. Goldberg and R. D. Weir, Pure Appl. Chem., 1992, 64, 1545
- 10
W. F. Guthrie,, M. C. Croarkin,, G. W. Burns,, G. F. Strouse,, P. Marcarino,, M. Battuello,, H. K. Lee,, J. C. Kim,, K. S. Cam,, C. Rhee,, M. Chame,, M. Arai,, H. Sakurai,, A. I. Pokhodun,, N. P. Moiseeva,, S. A. Perevalova,, M. J. de Groot,, J. Zhang,, K. Fan, and S. Wu, “ Temperature: It’s Measurement and Control in Science and Industry ”, Vol. 6, ed. J. F. Schooley, New York, Am. Inst. Phys., 1992, p. 547
- 11
G. W. Burns,, M. G. Scroger,, G. F. Strouse,, M. C. Croarkin and W. F. Guthrie, NIST Monograph 175, April, 1993
- 12
R. L. Rusby,, R. P. Hudson and M. Durieux, Metrologia, to be published
- 13
R. Hultgren,, P. D. Desai,, D. T. Hawkins,, M. Gleiser,, K. K. Kelley and D. D. Wagman, “ Selected Values of the Thermodynamic Properties of the Elements ”, American Society of Metals, Metals Park, Ohio, 1973
- 14
G. T. Furukawa,, M. L. Reilly and J. S. Gallagher, F. Phys. Chem., Ref. Data, 1974, 3, 163
- 15
M. Dixon,, F. E. Hoare,, T. M. Holden and D. E. Moody, Proc Roy. Soc (Lond.), 1965, 285A, 561
- 16
M. Dixon,, F. E. Hoare and T. M. Holden, Proc Phys. Soc. (Lond.), 1967, 90, 253
- 17
G. E. Shoemake and J. A. Rayne, Phys. Rev. Lett., 1968, 26A, 222
- 18
W. T. Berg, J. Phys. Chem. Solids, 1969, 30, 69
- 19
F. Boerstoel,, J. J. Zwart and J. Hansen, Physica, 1971, 54, 442
- 20
K. Clusius,, C. G. Losa and P. Franzosini, Z. Naturforsch., 1957, 12A, 34
- 21
H. Yokokawa and Y. Takahashi, F. Chem. Thermodyn., 1979, 11, 411
- 22
W. B. Kendall,, R. L. Orr and R. Hultgren, F. Chem. Eng. Data, 1962, 7, 516
- 23
A. C. Macleod, F. Chem. Thermodyn., 1972, 4, 391
- 24
F. Righini and A. Rosso, High Temp--High Pressures, 1980, 12, 335
- 25
C. G. Maier and K. K. Kelley, F. Am. Chem. Soc., 1932, 54, 3243
- 26
C. C. Yeh and C. R. Brooks, High Temp. Sci., 1973, 5, 403
- 27
M. J. Wheeler, High Temp-High Pressures, 1972, 4, 363
- 28
O. Vollmer and R. Kohlhaas, Z. Naturforsch., 1969, 24A, 1669
- 29
Ya. A. Kraftmakher and E. R. Lanina, Fiz. Tverd. Tela, 1965, 7, 123 ; (Sov. Phys.-SolidState, 1965, 7, 92)
- 30
Ya. A. Kraftmakher, High Temp.-High Pressures, 1973, 5, 433
- 31
A. H. Seville, Phys. Stat. Sol. (a), 1974, 21, 649 ; F. Chem. Thermodyn., 1975, 7, 383
- 32
V. E. Zinov’ev,, I. G. Korshunov and R. V. Gel’d, Fiz. Tverd. Tela, 1971, 13, 3459 ; (Sov. Phys.-Solid State, 1972, 13, 2924)
- 33
W. P. White, Phys. Rev., 1918, 12, 436
- 34
F. M. Jaeger and E. Rosenbohm, Rec Trav. Chim., 1928, 47, 513
- 35
F. M. Jaeger,, E. Rosenbaum and J. A. Bottema, Proc Acad. Sci., Amsterdam, 1932, 35, 763
- 36
A. K. Chaudhuri,, D. W. Bonnell,, L. A. Ford and J. L. Margrave, High Temp. Sci., 1970, 2, 203
- 37
G. K. Gathers,, J. W. Shaner and W. M. Hodgson, High Temp-High Pressures, 1979, 11, 529
- 38
S. V. Lebedev,, A. I. Savatimskii and Yu. B. Smirnov, Teplofiz. Vys. Temp, 1971, 9, 635 ; (High Temp, 1971, 9, 578)
- 39
J. Blaise,, J. Vergès,, J. F. Wyart and R. Engleman, F. Phys. II, 1992, 2, 947 ; J. Res. Natl. Inst. Stand. Technol., 1992, 97, 213
- 40
H. G. Kolsky,, R. M. Gilmer and P. W. Gilles, USAEC Report LA-2110, March, 1957
- 41
E. R. Cohen and B. N. Taylor, CODATA Bull., 63, November, 1986
- 42
M. R. Moldover,, J. P. M. Trusler,, T. J. Edwards,, J. B. Mehl and R. S. Davis, F. Res. Natl. Bur. Stand., 1988, 93, 85
- 43
IUPAC Commission on Thermodynamics, Pure Appl Chem., 1982, 54, 1239
- 44
H. A. Jones,, I. L. Langmuir and G. M. Mackay, Phys. Rev., 1927, 30, 201
- 45
L. H. Dregerand J. L. Margrave, F. Phys. Chem., 1960, 64, 1323
- 46
R. F. Hampson and R. F. Walker, F. Res. Natl. Bur. Stand., 1961, 65A, 289
- 47
R. K. Koch,, E. D. Calvert,, C. R. Thomas and R. A. Beall, U.S. Bur. Mines Rept. Invest . 7271, July, 1969
- 48
E. R. Plante,, A. B. Sessoms and K. R. Fitch, F. Res. Natl. Bur. Stand., 1970, 74A, 647
- 49
M. Peleg and C. B. Alcock F. Sci. Instrum., 1966, 93, 558 ; Bull. Soe Fr. Ceram., 1966, ( 72 )
- 50
J. H. Norman,, H. G. Staley and W. E. Bell, F. Phys. Chem., 1967, 71, 3686