Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

The properties and glass-forming ability (GFA) of platinum- and palladium-based bulk metallic glasses (BMGs) for jewellery were introduced in Part I of this two-part review (1). Here, we will describe methods for their processing, tarnishing and corrosion resistance and consider their prospects and future developments.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16248976623399
2021-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Houghton_16a_Imp-Part_II.html?itemId=/content/journals/10.1595/205651321X16248976623399&mimeType=html&fmt=ahah

References

  1. Houghton O. S., and Greer A. L. Johnson Matthey Technol. Rev., 2021, 65, (4), 506 LINK https://www.technology.matthey.com/article/65/4/506-518/ [Google Scholar]
  2. Kui H. W., Greer A. L., and Turnbull D. Appl. Phys. Lett., 1984, 45, (6), 615 LINK https://doi.org/10.1063/1.95330 [Google Scholar]
  3. Wang X., Tian Z., Zeng M., Nollmann N., Wilde G., and Tang C. AIP Adv., 2017, 7, (9), 095308 LINK https://doi.org/10.1063/1.4992069 [Google Scholar]
  4. Schroers J., and Johnson W. L. Appl. Phys. Lett., 2004, 84, (18), 3666 LINK https://doi.org/10.1063/1.1738945 [Google Scholar]
  5. Haruyama O., Watanabe T., Yuki K., Horiuchi M., Kato H., and Nishiyama N. Phys. Rev. B, 2011, 83, (6), 064201 LINK https://doi.org/10.1103/PhysRevB.83.064201 [Google Scholar]
  6. Inoue A., Nishiyama N., and Kimura H. Mater. Trans., JIM, 1997, 38, (2), 179 LINK https://doi.org/10.2320/matertrans1989.38.179 [Google Scholar]
  7. Chen N., Gu L., Xie G. Q., Louzguine-Luzgin D. V., Yavari A. R., Vaughan G., Imhoff S. D., Perepezko J. H., Abe T., and Inoue A. Acta Mater., 2010, 58, (18), 5886 LINK https://doi.org/10.1016/j.actamat.2010.07.003 [Google Scholar]
  8. Granata D., Fischer E., Wessels V., and Löffler J. F. Appl. Phys. Lett., 2015, 106, (1), 011902 LINK https://doi.org/10.1063/1.4905174 [Google Scholar]
  9. Yang X., Ma X., Li Q., and Guo S. J. Alloys Compd., 2013, 554, 446 LINK https://doi.org/10.1016/j.jallcom.2012.11.170 [Google Scholar]
  10. Seki I., Louzguine-Luzgin D. V., Takahashi T., Kimura H., and Inoue A. Mater. Trans., 2011, 52, (3), 458 LINK https://doi.org/10.2320/matertrans.MBW201001 [Google Scholar]
  11. Granata D., Fischer E., Wessels V., and Löffler J. F. Acta Mater., 2014, 71, 145 LINK https://doi.org/10.1016/j.actamat.2014.03.008 [Google Scholar]
  12. Yao K. F., Ruan F., Yang Y. Q., and Chen N. Appl. Phys. Lett., 2006, 88, (12), 122106 LINK https://doi.org/10.1063/1.2187516 [Google Scholar]
  13. Yu J. S., Zeng Y. Q., Fujita T., Hashizume T., Inoue A., Sakurai T., and Chen M. W. Appl. Phys. Lett., 2010, 96, (14), 141901 LINK https://doi.org/10.1063/1.3373528 [Google Scholar]
  14. Drehman A. J., and Greer A. L. Acta Metall., 1984, 32, (3), 323 LINK https://doi.org/10.1016/0001-6160(84)90105-6 [Google Scholar]
  15. Wall J. J., Liu C. T., Rhim W.-K., Li J. J. Z., Liaw P. K., Choo H., and Johnson W. L. Appl. Phys. Lett., 2008, 92, (24), 244106 LINK https://doi.org/10.1063/1.2948861 [Google Scholar]
  16. Inoue A., Zhang T., Takeuchi A., and Zhang W. Mater. Trans., JIM, 1996, 37, (4), 636 LINK https://doi.org/10.2320/matertrans1989.37.636 [Google Scholar]
  17. Schroers J., and Johnson W. L. Appl. Phys. Lett., 2000, 77, (8), 1158 LINK https://doi.org/10.1063/1.1289033 [Google Scholar]
  18. Nishiyama N., Takenaka K., Miura H., Saidoh N., Zeng Y., and Inoue A. Intermetallics, 2012, 30, 19 LINK https://doi.org/10.1016/j.intermet.2012.03.020 [Google Scholar]
  19. Nishiyama N., and Inoue A. Mater. Trans., JIM, 1996, 37, (10), 1531 LINK https://doi.org/10.2320/matertrans1989.37.1531 [Google Scholar]
  20. Ding H.-Y., Li Y., and Yao K.-F. Chin. Phys. Lett., 2010, 27, (12), 126101 LINK https://doi.org/10.1088/0256-307X/27/12/126101 [Google Scholar]
  21. Schroers J., Wu Y., Busch R., and Johnson W. L. Acta Mater., 2001, 49, (14), 2773 LINK https://doi.org/10.1016/S1359-6454(01)00159-8 [Google Scholar]
  22. Chen N., Pan D., Louzguine-Luzgin D. V., Xie G. Q., Chen M. W., and Inoue A. Scr. Mater., 2010, 62, (1), 17 LINK https://doi.org/10.1016/j.scriptamat.2009.09.013 [Google Scholar]
  23. Demetriou M. D., Floyd M., Crewdson C., Schramm J. P., Garrett G., and Johnson W. L. Scr. Mater., 2011, 65, (9), 799 LINK https://doi.org/10.1016/j.scriptamat.2011.07.035 [Google Scholar]
  24. Kündig A. A., Lepori D., Perry A. J., Rossmann S., Blatter A., Dommann A., and Uggowitzer P. J. Mater. Trans., 2002, 43, (12), 3206 LINK https://doi.org/10.2320/matertrans.43.3206 [Google Scholar]
  25. Kazemi H. “Alloy Development of a New Platinum-Based Bulk Metallic Glass”, PhD Thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 3rd March, 2017 LINK https://infoscience.epfl.ch/record/225963?ln=en [Google Scholar]
  26. Freyé T., and Fischer-Buehner J. ‘Platinum Alloys in the 21st Century: A Comparative Study’, The 25th Santa Fe Symposium, 15th–18th May, 2011, Albuquerque, USA, pp. 201–230 LINK http://www.santafesymposium.org/2011-santa-fe-symposium-papers/2011-platinum-alloys-in-the-21st-century-a-comparative-study [Google Scholar]
  27. Corti C. W. ‘Jewellery Alloys – Past, Present and Future’, The Goldsmiths’ Company Jewellery Materials Congress, 8th–9th July, 2019, London, UK, 24 pp LINK https://www.assayofficelondon.co.uk/media/2560/jewellery-alloys-past-present-future-c-corti.pdf [Google Scholar]
  28. Mukherjee S., Schroers J., Zhou Z., Johnson W. L., and Rhim W.-K. Acta Mater., 2004, 52, (12), 3689 LINK https://doi.org/10.1016/j.actamat.2004.04.023 [Google Scholar]
  29. Battaini P. ‘The Working Properties for Jewelry Fabrication using New Hard 950 Palladium Alloys’, The 20th Santa Fe Symposium, 10th–13th September 2006, Nashville, USA, pp. 19–53 LINK http://www.santafesymposium.org/2006-santa-fe-symposium-papers/2006-the-working-properties-for-jewelry-fabrication-using-new-hard-950-palladium-alloys [Google Scholar]
  30. Schroers J., Lohwongwatana B., Johnson W. L., and Peker A. Mater. Sci. Eng.: A, 2007, 449–451, 235 LINK https://doi.org/10.1016/j.msea.2006.02.301 [Google Scholar]
  31. Lohwongwatana B., Schroers J., and Johnson W. L. ‘Liquidmetal – Hard 18K and .850Pt Alloys that can be Processed like Plastics or Blown Like Glass’, The 13th Santa Fe Symposium, 20th–23rd May 2007, Albuquerque, USA, pp. 289–303 LINK http://www.santafesymposium.org/2007-santa-fe-symposium-papers/2007-liquid-metal-hard-18k-and-850pt-alloys-that-can-be-processed-like-plasticsor-blown-like-glass [Google Scholar]
  32. ‘Swatch Group Signs Exclusive License Agreement With Liquidmetal Technologies’, The Swatch Group Ltd, Switzerland, 10th March, 2011 LINK https://www.swatchgroup.com/en/services/archive/2011/swatch-group-signs-exclusive-license-agreement-liquidmetal-technologies [Google Scholar]
  33. Schroers J., Lohwongwatana B., Johnson W. L., and Peker A. Appl. Phys. Lett., 2005, 87, (6), 061912 LINK https://doi.org/10.1063/1.2008374 [Google Scholar]
  34. Schroers J. Adv. Mater., 2010, 22, (14), 1566 LINK https://doi.org/10.1002/adma.200902776 [Google Scholar]
  35. Schroers J. J. Miner. Metals Mater. Soc., 2005, 57, (5), 35 LINK https://doi.org/10.1007/s11837-005-0093-2 [Google Scholar]
  36. Cardinal S., Qiao J., Pelletier J. M., and Kato H. Intermetallics, 2015, 63, 73 LINK https://doi.org/10.1016/j.intermet.2015.04.003 [Google Scholar]
  37. Klotz U. E., and Eisenbart M. ‘Gold-Based Bulk Metallic Glasses: Hard like Steel, Moldable like Plastics’, The 13th Santa Fe Symposium, 17th–20th May, 2013, Albuquerque, USA, 16 pp LINK http://www.santafesymposium.org/2013-santa-fe-symposium-papers/2013-gold-based-bulk-metallic-glasses-hard-like-steel-moldable-like-plastics [Google Scholar]
  38. Eisenbart M. “On the Processing and the Tarnishing Mechanism of Gold-Based Bulk Metallic Glasses”, Dissertation, Universität des Saarlandes, Germany, 2015 [Google Scholar]
  39. Eisenbart M., Klotz U. E., Pfund A., and Zielonka A. ‘Method for Casting an Object Made of Metallic Glass’, World Patent Appl. WO2014198380 [Google Scholar]
  40. Kazemi H., Cattin C., Blank M., and Weber L. J. Alloys Compd., 2017, 695, 3419 LINK https://doi.org/10.1016/j.jallcom.2016.12.017 [Google Scholar]
  41. Peker A., and Johnson W. L. Appl. Phys. Lett., 1993, 63, (17) 2342 LINK https://doi.org/10.1063/1.110520 [Google Scholar]
  42. Zhang W., Guo H., Li Y., Wang Y., Wang H., Chen M., and Yamaura S. J. Alloys Compd., 2014, 617, 310 LINK https://doi.org/10.1016/j.jallcom.2014.07.214 [Google Scholar]
  43. Duan G., Wiest A., Lind M. L., Li J., Rhim W.-K., and Johnson W. L. Adv. Mater., 2007, 19, (23), 4272 LINK https://doi.org/10.1002/adma.200700969 [Google Scholar]
  44. Inoue A. Mater. Trans., JIM, 1995, 36, (7), 866 LINK https://doi.org/10.2320/matertrans1989.36.866 [Google Scholar]
  45. Schroers J., and Paton N. Adv. Mater. Proc., 2006, 164, (1), 61 [Google Scholar]
  46. Lohwongwatana B., Schroers J., and Johnson W. L. Phys. Rev. Lett., 2006, 96, (7), 075503 LINK https://doi.org/10.1103/PhysRevLett.96.075503 [Google Scholar]
  47. Zhang T., Zhang X., Zhang W., Jia F., Inoue A., Hao H., and Ma Y. Mater. Lett., 2011, 65, (14), 2257 LINK https://doi.org/10.1016/j.matlet.2011.04.033 [Google Scholar]
  48. Haag F., Sauget R., Kurtuldu G., Prades-Rödel S., Schawe J. E. K., Blatter A., and Löffler J. F. J. Non-Cryst. Solids, 2019, 521, 119120 LINK https://doi.org/10.1016/j.jnoncrysol.2018.09.035 [Google Scholar]
  49. Mechler S., Yahel E., Pershan P. S., Meron M., and Lin B. Appl. Phys. Lett., 2011, 98, (25), 251915 LINK https://doi.org/10.1063/1.3599515 [Google Scholar]
  50. Schroers J., Pham Q., Peker A., Paton N., and Curtis R. V. Scr. Mater., 2007, 57, (4), 341 LINK https://doi.org/10.1016/j.scriptamat.2007.04.033 [Google Scholar]
  51. Schroers J., Hodges T. M., Kumar G., Raman H., Barnes A. J., Pham Q., and Waniuk T. A. Mater. Today, 2011, 14, (1–2), 14 LINK https://doi.org/10.1016/S1369-7021(11)70018-9 [Google Scholar]
  52. Mota R. M. O., Liu N., Kube S. A., Chay J., McClintock H. D., and Schroers J. Appl. Mater. Today, 2020, 19, 100567 LINK https://doi.org/10.1016/j.apmt.2020.100567 [Google Scholar]
  53. Kanik M., Bordeenithikasem P., Schroers J., Selden N., Desai A., Kim D., and M’Closkey R. ‘Microscale Three-Dimensional Hemispherical Shell Resonators From Metallic Glass’, International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, California, USA, 25th-26th February, 2014, pp. 1–4 LINK https://doi.org/10.1109/ISISS.2014.6782500 [Google Scholar]
  54. Sharma P., Kaushik N., Kimura H., Saotome Y., and Inoue A. Nanotech., 2007, 18, (3), 035302 LINK https://doi.org/10.1088/0957-4484/18/3/035302 [Google Scholar]
  55. Kumar G., Tang H. X., and Schroers J. Nature, 2009, 457, 868 LINK https://doi.org/10.1038/nature07718 [Google Scholar]
  56. Schroers J., Nguyen T., O’Keeffe S., and Desai A. Mater. Sci. Eng. A, 2007, 449–451, 898 LINK https://doi.org/10.1016/j.msea.2006.02.398 [Google Scholar]
  57. Chen Y. C., Chu J. P., Jang J. S. C., and Yu C. W. Mater. Sci. Eng. A, 2012, 556, 488 LINK https://doi.org/10.1016/j.msea.2012.07.017 [Google Scholar]
  58. Kato A., Inoue A., Horikiri H., and Masumoto T. Mater. Trans., JIM, 1994, 35, (2), 125 LINK https://doi.org/10.2320/matertrans1989.35.125 [Google Scholar]
  59. Lee K. S., and Chang Y. W. Mater. Sci. Eng. A, 2005, 399, (1–2), 238 LINK https://doi.org/10.1016/j.msea.2005.03.103 [Google Scholar]
  60. Zhang L. C., Xu J., and Ma E. Mater. Sci. Eng. A, 2006, 434, (1–2), 280 LINK https://doi.org/10.1016/j.msea.2006.06.085 [Google Scholar]
  61. Jang J. S.-C., Tseng C.-T., Chang L.-J., Huang J. C.-C., Yeh Y.-C., and Lou J.-L. Adv. Eng. Mater., 2008, 10, (11), 1048 LINK https://doi.org/10.1002/adem.200800104 [Google Scholar]
  62. Martinez R., Kumar G., and Schroers J. Scr. Mater., 2008, 59, (2), 187 LINK https://doi.org/10.1016/j.scriptamat.2008.03.008 [Google Scholar]
  63. Wiest A., Harmon J. S., Demetriou M. D., Conner R. D., and Johnson W. L. Scr. Mater., 2009, 60, (3), 160 LINK https://doi.org/10.1016/j.scriptamat.2008.09.021 [Google Scholar]
  64. Shao L., Datye A., Huang J., Ketkaew J., Sohn S. W., Zhao S., Wu S., Zhang Y., Schwarz U. D., and Schroers J. Sci. Rep., 2017, 7, 7989 LINK https://doi.org/10.1038/s41598-017-08460-6 [Google Scholar]
  65. Huang Y., Xue P., Guo S., Wu Y., Cheng X., Fan H., Ning Z., Cao F., Xing D., Sun J., and Liaw P. K. Sci. Rep., 2016, 6, 30674 LINK https://doi.org/10.1038/srep30674 [Google Scholar]
  66. Chen W., Liu Z., and Schroers J. Acta Mater., 2014, 62, 49 LINK https://doi.org/10.1016/j.actamat.2013.08.053 [Google Scholar]
  67. Schroers J., Nguyen T., and Croopnick G. A. Scr. Mater., 2007, 56, (2), 177 LINK https://doi.org/10.1016/j.scriptamat.2006.08.048 [Google Scholar]
  68. Rizzi P., Corazzari I., Fiore G., Fenoglio I., Fubini B., Kaciulis S., and Battezzati L. Corros. Sci., 2013, 77, 135 LINK https://doi.org/10.1016/j.corsci.2013.07.036 [Google Scholar]
  69. Shpryko O. G., Streitel R., Balagurusamy V. S. K., Grigoriev A. Y., Deutsch M., Ocko B. M., Meron M., Lin B., and Pershan P. S. Science, 2006, 313, (5783), 77 LINK https://doi.org/10.1126/science.1128314 [Google Scholar]
  70. Kato H., Wada T., Hasegawa M., Saida J., Inoue A., and Chen H. S. Scr. Mater., 2006, 54, (12), 2023 LINK https://doi.org/10.1016/j.scriptamat.2006.03.025 [Google Scholar]
  71. Schroers J. Acta Mater., 2008, 56,(3), 471 LINK https://doi.org/10.1016/j.actamat.2007.10.008 [Google Scholar]
  72. Pitt E. B., Kumar G., and Schroers J. J. Appl. Phys., 2011, 110, (4), 043518 LINK https://doi.org/10.1063/1.3624666 [Google Scholar]
  73. Cardinal S., Pelletier J. M., Eisenbart M., and Klotz U. E. Mater. Sci. Eng. A, 2016, 660, 158 LINK https://doi.org/10.1016/j.msea.2016.02.078 [Google Scholar]
  74. Boordeenithikasem P., Sohn S., Liu Z., and Schroers J. Scr. Mater., 2015, 104, 56 LINK https://doi.org/10.1016/j.scriptamat.2015.03.024 [Google Scholar]
  75. Bochtler B., Kruse O., and Busch R. J. Phys. Cond. Matt., 2020, 32, (24), 244002 LINK https://doi.org/10.1088/1361-648X/ab7ad7 [Google Scholar]
  76. Fiore G., Rizzi P., and Battezzati L. J. Alloys Compd., 2011, 509, S166 LINK https://doi.org/10.1016/j.jallcom.2011.01.087 [Google Scholar]
  77. Nishiyama N., and Inoue A. Mater. Trans., JIM, 1999, 40, (1), 64 LINK https://doi.org/10.2320/matertrans1989.40.64 [Google Scholar]
  78. Corti C. W. ‘The Role of Hardness in Jewelry Alloys’, The 22nd Santa Fe Symposium, 18th–21st May 2008, Albuquerque, USA, pp. 103–120 LINK http://www.santafesymposium.org/2008-santa-fe-symposium-papers/2008-the-role-of-hardness-in-jewelry-alloys [Google Scholar]
  79. Demetriou M. D., Launey M. E., Garrett G., Schramm J. P., Hofmann D. C., Johnson W. L., and Ritchie R. O. Nat. Mater., 2011, 10, (2), 123 LINK https://doi.org/10.1038/nmat2930 [Google Scholar]
  80. Spaepen F. Scr. Mater., 2006, 54, (3), 363 LINK https://doi.org/10.1016/j.scriptamat.2005.09.046 [Google Scholar]
  81. Argon A. S. Acta Metall., 1979, 27, (1), 47 LINK https://doi.org/10.1016/0001-6160(79)90055-5 [Google Scholar]
  82. Schroers J., and Johnson W. L. Phys. Rev. Lett., 2004, 93, (25), 255506 LINK https://doi.org/10.1103/PhysRevLett.93.255506 [Google Scholar]
  83. Kumar G., Prades-Rodel S., Blatter A., and Schroers J. Scr. Mater., 2011, 65, (7), 585 LINK https://doi.org/10.1016/j.scriptamat.2011.06.029 [Google Scholar]
  84. Kumar G., Neibecker P., Liu Y. H., and Schroers J. Nat. Commun., 2013, 4, 1536 LINK https://doi.org/10.1038/ncomms2546 [Google Scholar]
  85. Lewandowski J. J., Wang W. H., and Greer A. L. Philos. Mag.Lett., 2005, 85, (2), 77 LINK https://doi.org/10.1080/09500830500080474 [Google Scholar]
  86. Tian L., Cheng Y.-Q., Shan Z.-W., Li J., Wang C.-C., Han X.-D., Sun J., and Ma E. Nat. Commun., 2012, 3, 609 LINK https://doi.org/10.1038/ncomms1619 [Google Scholar]
  87. Greer A. L. Mater. Today, 2009, 12, (1–2), 14 LINK https://doi.org/10.1016/S1369-7021(09)70037-9 [Google Scholar]
  88. Kazemi H., Cattin C., Hodel G., Pachova T., and Weber L. J. Non-Cryst. Solids, 2017, 460, 66 LINK https://doi.org/10.1016/j.jnoncrysol.2017.01.025 [Google Scholar]
  89. Bi H. W., Inoue A., Han F. F., Han Y., Kong F. L., Zhu S. L., Shalaan E., Al-Marzouki F., and Greer A. L. Acta Mater., 2018, 147, 90 LINK https://doi.org/10.1016/j.actamat.2018.01.016 [Google Scholar]
  90. Zhong Z. C., Jiang X. Y., and Greer A. L. Mater. Sci. Eng. A, 1997, 226–228, 531 LINK https://doi.org/10.1016/S0921-5093(97)80062-7 [Google Scholar]
  91. Qiao J., Jia H., and Liaw P. K. Mater. Sci. Eng. R, 2016, 100, 1 LINK https://doi.org/10.1016/j.mser.2015.12.001 [Google Scholar]
  92. Li M.-X., Zhao S.-F., Lu Z., Hirata A., Wen P., Bai H.-Y., Chen M., Schroers J., Liu Y., and Wang W.-H. Nature, 2019, 569, 99 LINK https://doi.org/10.1038/s41586-019-1145-z [Google Scholar]
  93. Murali P., and Ramamurty U. Acta Mater., 2005, 53, (5), 1467 LINK https://doi.org/10.1016/j.actamat.2004.11.040 [Google Scholar]
  94. Chen Z., Datye A., Brooks P. A., Sprole M., Ketkaew J., Sohn S., Schroers J., and Schwarz U. D. MRS Adv., 2019, 4, 73 LINK https://doi.org/10.1557/adv.2019.30 [Google Scholar]
  95. Datye A., Ketkaew J., Schroers J., and Schwarz U. D. J. Alloys Compd., 2020, 819, 152979 LINK https://doi.org/10.1016/j.jallcom.2019.152979 [Google Scholar]
  96. Vogel H. Phys. Z., 1921, 22, 645 [Google Scholar]
  97. Fulcher G. S. J. Am. Ceram. Soc., 1925, 8, (6), 339 LINK https://doi.org/10.1111/j.1151-2916.1925.tb16731.x [Google Scholar]
  98. Tammann G., and Hesse W. Z. Anorg. Allg. Chem., 1926, 156, (1), 245 LINK https://doi.org/10.1002/zaac.19261560121 [Google Scholar]
  99. Moynihan C. T., Easteal A. J., De Bolt M. A., and Tucker J. J. Am. Ceram. Soc., 1976, 59, (1–2), 12 LINK https://doi.org/10.1111/j.1151-2916.1976.tb09376.x [Google Scholar]
  100. Chen H. S. Rep. Prog. Phys., 1980, 43, (4), 353 LINK https://doi.org/10.1088/0034-4885/43/4/001 [Google Scholar]
  101. van den Beukel A., and Sietsma J. Acta Metall.Mater., 1990, 38, (3), 383 LINK https://doi.org/10.1016/0956-7151(90)90142-4 [Google Scholar]
  102. Niikura A., Tsai A. P., Inoue A., and Masumoto T. J. Non-Cryst. Solids, 1993, 159, (3), 229 LINK https://doi.org/10.1016/0022-3093(93)90227-O [Google Scholar]
  103. Lewandowski J. J. Mater. Trans., 2001, 42, (4), 633 LINK https://doi.org/10.2320/matertrans.42.633 [Google Scholar]
  104. Kumar G., Ohnuma M., Furubayashi T., Ohkubo T., and Hono K. J. Non-Cryst. Solids, 2008, 354, (10–11), 882 LINK https://doi.org/10.1016/j.jnoncrysol.2007.08.001 [Google Scholar]
  105. Köster U., and Meinhardt J. Mater. Sci. Eng. A, 1994, 178, (1–2), 271 LINK https://doi.org/10.1016/0921-5093(94)90553-3 [Google Scholar]
  106. Clavaguera-Mora M. T., Clavaguera N., Crespo D., and Pradell T. Prog. Mater. Sci., 2002, 47, (6), 559 LINK https://doi.org/10.1016/S0079-6425(00)00021-9 [Google Scholar]
  107. Wu R. I., Wilde G., and Perepezko J. H. Mater. Sci. Eng. A, 2001, 301, (1), 12 LINK https://doi.org/10.1016/S0921-5093(00)01390-3 [Google Scholar]
  108. Kim H. S., Warren P. J., Cantor B., and Lee H. R. Nanostruct. Mater., 1999, 11, (2), 241 LINK https://doi.org/10.1016/S0965-9773(99)00037-9 [Google Scholar]
  109. Greer A. L. Mater. Sci. Eng. A, 2001, 304–306, 68 LINK https://doi.org/10.1016/S0921-5093(00)01449-0 [Google Scholar]
  110. Greer A. L. Nature, 1993, 366, (6453), 303 LINK https://doi.org/10.1038/366303a0 [Google Scholar]
  111. Egami T., and Waseda W. J. Non-Cryst. Solids, 1984, 64, (1–2), 113 LINK https://doi.org/10.1016/0022-3093(84)90210-2 [Google Scholar]
  112. Lu I.-R., Kolbe M., Görler G. P., and Willnecker R. Mater. Sci. Eng.: A, 2004, 375–377, 754 LINK https://doi.org/10.1016/j.msea.2003.10.260 [Google Scholar]
  113. Legg B. A., Schroers J., and Busch R. Acta Mater., 2007, 55, (3), 1109 LINK https://doi.org/10.1016/j.actamat.2006.09.024 [Google Scholar]
  114. Nishiyama N., and Inoue A. J. Non-Cryst. Solids, 2002, 312–314, 575 LINK https://doi.org/10.1016/S0022-3093(02)01784-2 [Google Scholar]
  115. Yang J.-Y., Gu J.-L., Chen S.-Q., Luan C.-H., Shao Y., and Yao K.-F. Mater. Corros., 2018, 69, (11), 1509 LINK https://doi.org/10.1002/maco.201810072 [Google Scholar]
  116. Eisenbart M., Klotz U. E., Busch R., and Gallino I. Corros. Sci., 2014, 85, 258 LINK https://doi.org/10.1016/j.corsci.2014.04.024 [Google Scholar]
  117. Eisenbart M., Klotz U. E., Busch R., and Gallino I. J. Alloys Compd., 2014, 615, (1), S 118 LINK https://doi.org/10.1016/j.jallcom.2013.11.167 [Google Scholar]
  118. Evenson Z., Naleway S. E., Wei S., Gross O., Kruzic J. J., Gallino I., Possart W., Stommel M., and Busch R. Phys. Rev. B, 2014, 89, (17), 174204 LINK https://doi.org/10.1103/PhysRevB.89.174204 [Google Scholar]
  119. Evenson Z., Koschine T., Wei S., Gross O., Bednarcik J., Gallino I., Kruzic J. J., Rätzke K., Faupel F., and Busch R. Scr. Mater., 2015, 103, 14 LINK https://doi.org/10.1016/j.scriptamat.2015.02.026 [Google Scholar]
  120. Wu Y.-F., Chiang W.-C., Chu J., Nieh T.-G., Kawamura Y., and Wu J.-K. Mater. Lett., 2006, 60, (19), 2416 LINK https://doi.org/10.1016/j.matlet.2006.01.068 [Google Scholar]
  121. Takeuchi A., Chen N., Wada T., Yokoyama Y., Kato H., Inoue A., and Yeh J. W. Intermetallics, 2011, 19, (10), 1546 LINK https://doi.org/10.1016/j.intermet.2011.05.030 [Google Scholar]
  122. Qin C. L., Zeng Y. Q., Louzguine D. V., Nishiyama N., and Inoue A. J. Alloys Compd., 2010, 504, S 172 LINK https://doi.org/10.1016/j.jallcom.2010.03.104 [Google Scholar]
  123. Chen N., Qin C. L., Xie G. Q., Louzguine-Luzgin D. V., and Inoue A. J. Mater. Res., 2010, 25, (10), 1943 LINK https://doi.org/10.1557/JMR.2010.0246 [Google Scholar]
  124. Qin F., Xie G., Wada T., Zhu S., and Dan Z. Mater. Trans., 2013, 54, (8), 1347 LINK https://doi.org/10.2320/matertrans.MF201314 [Google Scholar]
  125. Watanabe L. Y., Roberts S. N., Baca N., Wiest A., Garrett S. J., and Conner R. D. Mater. Sci. Eng. C, 2013, 33, (7), 4021 LINK https://doi.org/10.1016/j.msec.2013.05.044 [Google Scholar]
  126. Ma C., Nishiyama N., and Inoue A. Mater. Trans., 2002, 43, (5), 1161 LINK https://doi.org/10.2320/matertrans.43.1161 [Google Scholar]
  127. Yu J., Ding Y., Xu C., Inoue A., Sakurai T., and Chen M. Chem. Mater., 2008, 20, (14), 4548 LINK https://doi.org/10.1021/cm8009644 [Google Scholar]
  128. Rizzi P., Scaglione F., and Battezzati L. J. Alloys Compd., 2014, 586, (S1), S117 LINK https://doi.org/10.1016/j.jallcom.2012.11.029 [Google Scholar]
  129. Xue Y., Scaglione F., Rizzi P., and Battezzati L. Corros. Sci., 2017, 127, 141 LINK https://doi.org/10.1016/j.corsci.2017.08.026 [Google Scholar]
  130. Xue Y., Scaglione F., Rizzi P., Battezzati L., Denis P., and Fecht H.-J. Appl. Surf. Sci., 2019, 476, 412 LINK https://doi.org/10.1016/j.apsusc.2019.01.099 [Google Scholar]
  131. Mozgovoy S., Heinrich J., Klotz U. E., and Busch R. Intermetallics, 2010, 18, (12), 2289 LINK https://doi.org/10.1016/j.intermet.2010.07.021 [Google Scholar]
  132. Faupel F., Frank W., Macht M.-P., Mehrer H., Naundorf V., Rätzke K., Schober H. R., Sharma S. K., and Teichler H. Rev. Mod. Phys., 2003, 75, (1), 237 LINK https://doi.org/10.1103/RevModPhys.75.237 [Google Scholar]
  133. Yi H.-B., Wang W.-H., and Samwer K. Mater. Today, 2013, 16, (5), 183 LINK https://doi.org/10.1016/j.mattod.2013.05.002 [Google Scholar]
  134. Gross O., Neuber N., Kuball A., Bochtler B., Hechler S., Frey M., and Busch R. Commun. Phys., 2019, 2, 83 LINK https://doi.org/10.1038/s42005-019-0180-2 [Google Scholar]
  135. Corti C. W. ‘What is a White Gold? Progress on the Issues!’, Santa Fe Symposium on Jewelry Manufacturing Technology, Albuquerque, New Mexico, USA, May, 2005, pp. 103–119 LINK http://www.santafesymposium.org/2005-santa-fe-symposium-papers/2005-what-is-a-white-gold-progress-on-the-issues [Google Scholar]
  136. Nishiyama N., Takenaka K., and Inoue A. Appl. Phys. Lett., 2006, 88, (12), 121908 LINK https://doi.org/10.1063/1.2186512 [Google Scholar]
  137. Na J. H., Han K. H., Garrett G. R., Launey M. E., Demetriou M. D., and Johnson W. L. Sci. Rep., 2019, 9, 3269 LINK https://doi.org/10.1038/s41598-019-40014-w [Google Scholar]
  138. Liu L., Inoue A., and Zhang T. Mater. Trans., 2005, 46, (2), 376 LINK https://doi.org/10.2320/matertrans.46.376 [Google Scholar]
  139. Nishiyama N., Takenaka K., Wada T., Kimura H., and Inoue A. Mater. Trans., 2005, 46, (12), 2807 LINK https://doi.org/10.2320/matertrans.46.2807 [Google Scholar]
  140. Takenaka K., Wada T., Nishiyama N., Kimura H., and Inoue A. Mater. Trans., 2005, 46, (7), 1720 LINK https://doi.org/10.2320/matertrans.46.1720 [Google Scholar]
  141. Liu L., Zhao X., Ma C., Pang S., and Zhang T. J. Non-Cryst. Solids, 2006, 352, (52–54), 5487 LINK https://doi.org/10.1016/j.jnoncrysol.2006.09.025 [Google Scholar]
  142. Chen N., Li Y., and Yao K.-F. J. Alloys Compd., 2010, 504, (S1), S211 LINK https://doi.org/10.1016/j.jallcom.2010.02.079 [Google Scholar]
  143. Louzguine-Luzgin D. V., Georgarakis K., Zadorozhnyy V., Chen N., Nakayama K., Vaughan G., Yavari A. R., and Inoue A. Intermetallics, 2012, 20, (1), 135 LINK https://doi.org/10.1016/j.intermet.2011.08.022 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16248976623399
Loading
/content/journals/10.1595/205651321X16248976623399
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error