Skip to content
1887
Volume 66, Issue 2
  • ISSN: 2056-5135

Abstract

The catalytic steam reforming process of natural gas consumes up to approximately 60% of overall energy used in ammonia production. The optimisation of the reforming catalyst performance can significantly improve the operation of the whole ammonia plant. An online model uses actual process parameters to optimise and reconcile the data of primary reforming products with possibility to predict the catalyst performance. The model uses a combination of commercial simulator and open-source code based on scripts and functions in the form of m-files to calculate various physical properties of reacting gases. The optimisation of steady-state flowsheet, based on real-time plant data from the distributed control system (DCS), is essential for the application of the model at the industrial level. The simplicity of the calculation method used by the model provides the fundamental basis for industrial application in the frame of digitalisation initiative. The principal aim of the optimisation procedure is to change the working curve for methane regarding its equilibrium curve as well as methane outlet molar concentration. This is the critical process parameter in reforming catalyst operation. An industrial top fired primary reformer unit based on Kellogg Inc technology design served for the validation of the model. Calculation procedure is used for continuous online evaluation of the most commercially available primary reformer catalysts. Based on the conducted evaluation, the model can indicate possible recommendations which can mitigate marginal performance and prolong reformer catalyst lifetime.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16221965765527
2021-05-28
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/2/Zecevic_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16221965765527&mimeType=html&fmt=ahah

References

  1. Appl M. “Ammonia: Principles and Industrial Practice”, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1999, 301 pp LINK https://doi.org/10.1002/9783527613885 [Google Scholar]
  2. “Catalyst Handbook”, ed. Twigg M. V. 2nd Edn., CRC Press, Boca Raton, USA, 1989 [Google Scholar]
  3. Latham D. “Mathematical Modelling of an Industrial Steam Methane Reformer”, Master’s Thesis, Department of Chemical Engineering, Queen’s University, Kingston, Canada, December, 2008, 279 pp LINK http://hdl.handle.net/1974/1650 [Google Scholar]
  4. Aguirre A. “Computational Fluid Dynamics Modelling and Simulation of Steam Methane Reforming Reactors and Furnaces”, PhD Thesis, Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA, 2017, 223 pp LINK https://escholarship.org/uc/item/8b56m71n [Google Scholar]
  5. Lao L., Aguirre A., Tran A., Wu Z., Durand H., and Christofides P. D. Chem. Eng. Sci., 2016, 148, 78 LINK https://doi.org/10.1016/j.ces.2016.03.038 [Google Scholar]
  6. Holt J. E., Kreusser J. K., Herritsch A., and Watson M. ANZIAM J., 2017, 59, C112 LINK https://doi.org/10.21914/anziamj.v59i0.12635 [Google Scholar]
  7. Xu J., and Froment G. F. AIChE J., 1989, 35, (1), 97 LINK https://doi.org/10.1002/aic.690350110 [Google Scholar]
  8. Xu J., and Froment G. F. AIChE J., 1989, 35, (1), 88 LINK https://doi.org/10.1002/aic.690350109 [Google Scholar]
  9. Wu Z., Aguirre A., Tran A., Durand H., Ni D., and Christofides P. D. Ind. Eng. Chem. Res., 2017, 56, (20), 6002 LINK https://doi.org/10.1021/acs.iecr.7b00390 [Google Scholar]
  10. Sun L. “Modelling and MPC for a Primary Gas Reformer”, Masters Thesis, Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada, 2013, 88 pp LINK https://doi.org/10.7939/R30W5Q [Google Scholar]
  11. Meziou A., Deshpande P. B., and Alatiqi I. M. Int. J. Hydrogen Energy, 1995, 20, (3), 187 LINK https://doi.org/10.1016/0360-3199(94)e0017-s [Google Scholar]
  12. Alatiqi I. M., and Meziou A. M. Comput. Chem. Eng., 1991, 15, (3), 147 LINK https://doi.org/10.1016/0098-1354(91)85001-b [Google Scholar]
  13. Schillmoller C. M., and van den Bruck U. W. Hydrocarbon Proc., 1984, 63, (12), 55 [Google Scholar]
  14. El Moneim N. A., Ismail I., and Nasser M. M. Int. J. Novel Res. Dev., 2018, 3, 11 [Google Scholar]
  15. Latham D. A., McAuley K. B., Peppley B. A., and Raybold T. M. Fuel Process. Technol., 2011, 92, (8), 1574 LINK https://doi.org/10.1016/j.fuproc.2011.04.001 [Google Scholar]
  16. Lee J. S., Seo J., Kim H. Y., Chung J. T., and Yoon S. S. Fuel, 2013, 111, 461 LINK https://doi.org/10.1016/j.fuel.2013.04.078 [Google Scholar]
  17. Minette F., Lugo-Pimentel M., Modroukas D., Davis A. W., Gill R., Castaldi M. J., and De Wilde J. Appl. Catal. B: Environ., 2018, 238, 184 LINK https://doi.org/10.1016/j.apcatb.2018.07.015 [Google Scholar]
  18. Rostrup-Nielsen J. R., Sehested J., and Nørskov J. K. Adv. Catal., 2002, 47, 65 LINK https://doi.org/10.1016/S0360-0564(02)47006-X [Google Scholar]
  19. Forester A. J., and Cromarty B. J. ‘Theory and Practice of Steam Reforming’, ICI/Katalco/KTI, UOP, 3rd Annual International Seminar of Hydrogen Plant Operation, 7th–9th June, 1995, Chicago, USA, 1995 [Google Scholar]
  20. Abbas S. Z., Dupont V., and Mahmud T. Int. J. Hydrogen Energy, 2017, 42, (5), 2889 LINK https://doi.org/10.1016/j.ijhydene.2016.11.093 [Google Scholar]
  21. Rostrup-Nielsen J., Christiansen L. J., “Concepts in Syngas Manufacture”, ed. and Hutchins G. J. 10, Catalytic Science Series, Imperial College Press, London, UK, 2011 [Google Scholar]
  22. Elnashaie S. S. E. H., and Uhlig F. “Numerical Techniques for Chemical and Biological Engineers Using MATLAB®: A Simple Bifurcation Approach”, Springer Science and Business Media LLC, New York, USA, 2007, 588 pp LINK https://doi.org/10.1007/978-0-387-68167-2 [Google Scholar]
  23. Olivieri A., and Vegliò F. Fuel Process. Technol., 2008, 89, (6), 622 LINK https://doi.org/10.1016/j.fuproc.2007.12.001 [Google Scholar]
  24. Alhabdan F. M., Abashar M. A., and Elnashaie S. S. E. Math. Comput. Model., 1992, 16, (11), 77 LINK https://doi.org/10.1016/0895-7177(92)90107-v [Google Scholar]
  25. Elnashaie S. S. E. H., and Elshishini S. S. “Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors”, Topics in Chemical Engineering, Vol. 7, Gordon and Breach Science Publishers SA, Yverdon, Switzerland, 1993 [Google Scholar]
  26. Cussler E. L. “Diffusion: Mass Transfer in Fluid Systems”, 2nd Edn., Cambridge University Press, Cambridge, UK, 1997, 580 pp [Google Scholar]
  27. Nauman E. B. “Chemical Reactor Design, Optimization, and Scaleup”, 2nd Edn., John Wiley and Sons Inc, Hoboken, USA, 2008, 608 pp LINK https://doi.org/10.1002/9780470282076 [Google Scholar]
  28. Hampson G. M. Chem. Eng., 1979, 523 [Google Scholar]
  29. Froment G. F., Bischoff K. B., and De Wilde J. “Chemical Reactor Analysis and Design”, 3rd Edn., John Wiley and Sons, New York, NY, USA, 2010, 606 pp [Google Scholar]
  30. Elnashaie S. S. E. H., and Adris A. “Fluidized Bed Steam Reformer for Methane”, Proceedings of the IV International Fluidization Conference, Banff, Canada, May, 1989 [Google Scholar]
  31. Elnashaie S. S. E. H., Adris A. M., Soliman M. A., and Al-Ubaid A. S. Can. J. Chem. Eng., 1992, 70, (4), 786 LINK https://doi.org/10.1002/cjce.5450700424 [Google Scholar]
  32. Zecevic N., and Bolf N. Ind. Eng. Chem. Res., 2020, 59, (8), 3458 LINK https://doi.org/10.1021/acs.iecr.9b06260 [Google Scholar]
  33. Lavoie J.-M. Front. Chem., 2014, 2, 81 LINK https://doi.org/10.3389/fchem.2014.00081 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16221965765527
Loading
/content/journals/10.1595/205651322X16221965765527
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error