Recovery of Radiogenic Osmium-1 *87* from Sulfide Copper Ores in Kazakhstan

By Zinesh **S.** Abisheva, Alina **N.** Zagorognyaya and Tulegen **N.** Bukurov Institute of Metallurgy and Ore Beneficiation, Almaty, 480100, Kazakhstan

There are **41** osmium isotopes with mass numbers from **162** to **196** and the majority are unstable. Only seven stable osmium isotopes occur naturally; these are the ones with mass numbers **184,186, 187,188,189,190** and **192.** Their abundance varies and they differ in some of their nuclear characteristics (1, 2). Osmium isotopes were naturally formed as a result of two different processes. Isotopes **184,186,188,189,190,192** and aportion **of** 187 originated during the **initial** nucleosynthesis of elements. Another portion of isotope **I8'Os** originated as a result of β disintegration of one of the rhenium isotopes:

$$
^{187}_{75}Re \rightarrow ^{187}_{76}Os + \beta^- + \overline{v}
$$

where β^- is a β -particle, \overline{v} is a β -disintegration antineutrino, see Figure 1. This process is continuous and has resulted in the gradual accumulation of the radiogenic osmium isotope **187,** especially in natural materials having a hgh rhenium content. **As** a consequence, the proportions between **'"0s** and the other osmium isotopes varies over a wide range $(2-5)$.

Researchers S. K. Kalinin and E. E. Fain from Kazakhstan have developed a set of analytical techniques, including the direct quantitative determination of osmium in ores and process products,

Fig. I Scheme of the disintegration of rhenium-I87 to osmium-187

a highly sensitive spectrochemical analysis of source materials and an isotopic analysis of osmium in concentrated samples $(2, 6-10)$. The techniques make use of hlgh-resolution spectroscopic equipment, as well as an appropriate consideration of physical and chemical properties of osmium and its spectral features. The limits of detection are within 10^{-4} to 10^{-7} per cent. The methods developed are believed to be highly reliable and capable of determining osmium with **minimal** error in samples of various compositions and with a wide range of concentrations.

Types of Osmium Deposits

The techniques developed $(2, 6-10)$ have assisted the authors in studying ores and minerals that occur in various deposits in the territory of the former Soviet Union, and in distinguishing the following major types of deposits where osmium isotopes are concentrated:

1 Platinum ore and osmiridium deposits. The proportion of 187 Os relative to the total amount of osmium ranges from **1.4** to **1.7** per cent. The major isotope present **is I9*Os.** Isotopes "Os, **3890s** and ¹⁸⁸Os are also present.

[ii] Sulfide deposits of copper-nickel and other ores enriched in platinum elements where the isotope **IE7Os** is found in concentrations of **2** to **3 per** cent and higher.

[iii] Copper-molybdenum deposits in secondary **quartz** rocks with rhenium content in molybdenites of 300 to 3000 g t⁻¹. Usually these ores contain only insignificant concentrations of non-radiogenic osmium isotopes. However, they do contain practically pure ¹⁸⁷Os isotope, in the range **99.0** to **99.9** per cent of the total osmium content. [iv] Some rhenium-containing copper deposits, such as copper-bearing sandstones and shale, where the content of radiogenic osmium-187 (in *Fig. 2 A sample of bornite ore from the Zhezkazgan deposit in Kazakhstan, containing the mineral zhezkazganite &Re%. The arrows indicate: pale area* - *zhezkazganite pink area* - *bornite black area* - *quariz This mineral is very rare: similar samples are mined for copper; rhenium and radiogenic osmium-187*

The photo was made in the rejlec five light immersion field. Magnification **x** *IS00*

the osmium identified) is higher than 99.4 per cent.

The fourth type of deposit includes the Zhezkazgan sulfide copper ore deposit in **Kazakhstan,** see Figure 2, where the authors have discovered radiogenic osmium and have thoroughly studied its isotopic composition (2, 11). The research has shown that **Kazakhstan** has stable raw materials for the production of osmium-187 isotope. **In this** connection the possibility that radiogenic osmium production might be a byproduct of the comprehensive processing of sulfide copper ores has been addressed.

Distribution of Osmium in the Products from Sulfide Processing

Copper concentrates are processed via smelting operations, resulting in the production of cathode copper, sulfuric acid and ammonium perrhenate. However, because the initial osmium-187 content in concentrates is less than 0.000005 **wt.%** (0.05 g t^{-1}) the recovery of osmium from concentrates is not possible.

Therefore, in order to identify products with the highest osmium concentration, for the first time during processing of copper raw materials we studied the distribution of osmium **giving** the content in the gaseous phase of products generated in metallurgical, sulfuric acid and rare metal production (12). The results obtained demonstrated that during electric smelting of the charge, there is almost **no** sublimation of osmium. The major quantity of osmium (91 per cent of its content in the charge) remains in the matte (which has a high collecting capacity) and more than **6** per cent passes into the *slag.* **In** the conversion of matte, 56.8 per cent of the osmium passes into converter gases, 8.5 per cent into ventilation gases, and 26.5 per cent into various dusts in the **gas** purification systems (12).

During scrubbing the gases, before their use in the sulfuric acid production process, 40.2 per cent of the osmium passes into wash solution (wash sulfuric acid) and 17 per cent passes into slime. The osmium content of the slime is increased 400 times compared to its initial concentration.

The major source of rhenium production is the wash sulfuric acid which contains 100 to 400 mg l^{-1} rhenium and 0.3 to 0.5 mg l^{-1} osmium. Rhenium is recovered from wash sulfuric acid by liquid-liquid extraction, using trialkylamine in kerosene. Rhenium is recovered ftom impregnated organic matter in the form of solid ammonium perrhenate salt by treatment with ammonia solution. In the liquid-liquid extraction of the wash sulfuric acid, about 15 per cent of the osmium passes into the organic phase, while 25 per cent remains in the spent sulfuric acid - raffinate.

In the subsequent rhenium stripping, 9 per cent of the osmium is concentrated in the mother liquor generated from the solid-phase stripping. The osmium concentration in the mother liquor is 80 to 100 times hgher than in the wash sulfuric acid. me stripping, carried out by the **ammonia** solution, results in the formation of three phases: organic, mother liquor and salt. Over 20 *years* of practice at the plant have shown that there are no essential problems in **separating** these phases.)

Hence, it has been determined that the major osmium concentrators are wash sulfuric acid pmcessing products - mother liquor generated from the solid-phase stripping of rhenium and lead slimes containing 15 to 40 mg I^{-1} and 15 to 50 g t^{-1} osmium, respectively. (Although more than 26 per cent of the osmium passes into various dusts, osmium concentration in dusts is not higher than 1 g t^{-1} , which does not make the dusts osmium concentrators (12).)

Recovery of Osmium

To develop effective processes for recovering osmium from solutions it is necessary to know the chemical forms in which osmium occurs. Therefore, the behaviour and chemical reactions of osmium compounds most probably formed during **gas** purification (in the system used for copper production: $OsO₄ - H₂SO₄ - SO₂ - H₂O$ have been studied **(13).**

A number of osmium(vI) sulfite complexes $[OsO₂(SO₃)₂(H₂O)₂]²$, $[OsO₂(SO₃)_{4-x}(H₂O)_x]^{-6+2x}$ and $[OsO₂(HSO₃)_x(SO₃)_{4-x}]_n^{-6+x}$ (x = 0 to 1, n = 1 to 4) were shown to form in solution, depending upon concentration, ratio of the constituents, the temperature, and time of interaction **(ageing).** The complex $[OsO₂(SO₃)₂(H₂O)₂]²⁻$ is the most readily extracted into trialkylamine and during the extraction **of** rhenium from the wash sulfuric acid **this** complex is extracted with trialkylamine. (The other **two** complexes tend to aggregate and polymerise. This has been confirmed by comparative extraction of the complexes.)

The osmium extraction mechanism has been identified as outer-sphere substitution (13). During stripping with ammonia solution, the rhenium precipitates as a solid salt, but the osmium complex

passes into the aqueous phase - the mother liquor generated from the solid-phase stripping of rhenium. **This** is a multicomponent ammonium sulfate system. To develop the process for recovering osmium from the mother liquor, the effect of vary*ing* physical and chemical factors which affect osmium(VI) conversions (concentration of constituents, temperature and solution ageing) have been investigated, during formation and storage of the mother liquor, in the following system: **[OSO~(SO\$~(H~O)\$** - **NhOH** - **(Nh)2S04** - **H2O** (14).

The results of the investigations suggest possible chemical processes which may be occurring during osmium stripping (14). Decreases in **ammonia** concentration and increases in the ammonium sulfate content and temperature during stripping result in the formation of the insoluble ammonium form $(NH_4)_2[OSO_2(SO_3)_2(H_2O)_2]$ and its water-soluble N-coordinated ammine derivative, the anion part of which can be represented as $[OsO₂(SO₃)₂(NH₃)₂]²$. With increasing mother liquor storage time, the portion of soluble complex is increased. We have determined **that** water-soluble ammine derivatives of osmium are converted into the insoluble form $(NH_4)_2[OSO_2(SO_4)_2(NH_3)_2]$ in sulfuric acid solution (14).

The method for recovering osmium from the process mother liquor is based on the formation of the insoluble form. To produce concentrate suitable for refining, recovered osmium-containing residue was roasted under reducing conditions. Metallic radiogenic osmium was produced from concentrate **using** well-known methods of distillation, precipitation and high-temperature hydrogen reduction (15).

The implementation of **this** technology of pre cessing mother liquor derived from solid-phase stripping of rhenium results in an average recovery from these solutions of 80 **per** cent of the osmium metal. (80 **per** cent is **direct** recovery **of** osmium from the mother liquor, the other 20 **per** cent in solid and liquid byproducts is recycled.) Analysis *carried* out by various methods **(6-9)** has shown that the *chemical* purity is 99.95 per cent and the isotopic purity is 99.4 ± 0.2 per cent of osmium-187.

Lastly, it should be noted that another source of

radiogenic osmium production is sulfuric acid slimes resulting from copper production. The basis of the slime is lead sulfate. For effective osmium recovery at the refining stage, a prelimi*nary* enrichment of the slime by removal of lead compounds is beneficial. **In this** connection studies have been undertaken to develop a process for the production of osmium concentrate and tribasic lead sulfate (IBLS).

The process includes pre-carbonisation **of** slimes with sodium carbonate solution followed by leaching of the carbonate cake with nitric acid, precipitation of lead sulfate from the nitrate solu**tions,** and production of **TBLS** from it (16). Osmium is concentrated in the resulting insoluble residue. Osmium in the concentrate is 25 times higher than in the initial slime. It is suitable for the separation and production procedures described above.

Conclusions

The technical feasibility of producing natural stable radiogenic osmium-187 isotope **from** rhenium-containing raw materials available in **Kazakhstan** has been demonstrated. The research performed **suggests** that osmium-187 could be produced in larger quantities and with higher puri**ty** than physical methods of separation allow. Further ways of utilising the ¹⁸⁷Os isotope would be a powerful incentive to commercialise production and could also contribute to the development of work **on** other naturally-occurring stable isotopes.

References

- A. 0. Nier, **The** isotopic constitution of osmium', *Pbys.* Rey., 1937, **52,** (8), 885
- S. K. Kalinin, E. E. **Fain** and K. E. Egizbaeva, "Stable Isotope Osmium-187", Publishing House 'Nauka', Alma-Ata, 1975 (in Russian)
- 3 S. N. Naldrett and W. F. Libby, 'Natural radioactivity of rhenium', *Pbys.* Rev., 1948,73, (5), 47
- H. Hintereberger, W. Herr and H. Voshage, 'Radiogenic osmium from rhenium-containing molybdenite', *Pbyx* Rey., 1954,95, (6), 1690
- W. Herr **and** E. Merz, **'Zur** Bestimmung der Halwertszeit des 187 Re. Weitete Datierunden nach der Re/Os - Methode', Z. Naturforsch., 1958, 13a, (3). 231
- 6 S. K. Kalinin and E. E. Fain, "Emissive Spectral Analysis of Mineral Raw Materials", Publishing House *'Nedra',* Moscow, 1969 **(ii** Russian)
- 7 K. E. Egizbaeva, S. **K.** Kalinin and E. E. **Fain,** 'Spectrographic determination of radiogenic osmium', Zb. Priklad. Spektr., 1967, 7, (6), 924 (in Russian)
- 8 E. E. Fain, 'Spectrographic determination of rhenium and osmium', *Vestn. AN KazSSR*, 1963, (2), 53-59 (in Russian)
- 9 K. E. Egizbaeva and E. E. **Fain,** 'Spectrographic determination of osmium in ores and process products', in "Improvement of Methods for Spectral Analysis of Noble Metals", **Publishing** House *'Nedra', Moscow, 1967, 46-52 (in Russian)*
- 10 S. **K.** Kalinin and E. E. **Fain,** 'Rhenium and radi*ogenic osmium in natural objects', Izv. AN KazSSR,* Ser. Geol., 1977, (6), 1-7 (in Russian)
- 11 T. A. Satpaeva, S. K. Kalinin and E. E. Fain, 'About contents of osmium in Zhezkazgan **ore** deposit', *VeM. AN KazssR,* 1960, (B), 29-31 **(ii** Russian)
- 12 A. N. Zagorodnyaya, *2.* S. Abisheva and T. N. Bukurov, 'Rhenium and osmium distribution with respect to products resulting from the processing sulfide copper raw materials', *Tsvetn. Met.*, 1997, (9), 47-50 **(ii** Russian)
- 13 Z. S. Abisheva, N. M. Bodnar and T. N. Bukurov, 'Osmium behavior during extraction of rhenium from sulfuric acid solutions', Tsvetn. Met., 1994, (9), 33-35 **(ii** Russian)
- 14 *2.* S. Abisheva, I. N. Parshina, E. G. Bochevskaya and V. Zh. Ushanov, 'Chemical conversions of osmium(VI) sulfite complexes in ammonia-sulfate solutions', *Hydrometallurgy*, 1998, 50, 271-280
- 15 A. **Illis,** B. I. Brandt and A. Manson, 'The recovery of osmium from nickel refinery anode slimes', *MetufL* **Trum.,** 1970, 1, (2), 431-434
- 16 *2.* S. Abisheva, A. N. Zagorodnyaya, B. B. Beisembaev and M. C. Abaidildinov, 'Complex treatment of lead slimes of copper production', Proc. 7th Int. Symp. Mineral Processing, Istanbul, Turkey, 15th-17th Sept, 1998, A. A. Balkema, Rotterdam, 1998, p. 451

The Authors

Zinesh S. Abisheva is Professor and Head of Laboratory of the Institute of Metallurgy and Ore Beneficiation. Her interests include the investigation and development of technologies for recovering rare elements (rhenium, radiogenic osmium, tellurium, gallium, indium) from intermediate and waste products produced by nonferrous metallurgy and chemical industries using solvent extraction, ion exchange, leaching and electrodialysis.

Alina N. Zagorognyaya is a Principal Research Associate and Professor of the Institute of Metallurgy and Ore Beneficiation. Her interests include the investigation and development of technologies for recovering rare elements (rhenium, radiogenic osmium, indium) from intermediate and waste products of nonferrous metallurgical and chemical industries using solvent extraction, ion exchange and leaching.

Tulegen N. Bukurov is Director General of State Enterprise. His interests include the development of all aspects of the production of rare elements.