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Models, which underpin all chemical engineering 
design work, vary widely in their complexity, ranging 
from traditional dimensionless number correlations 
through to modern computer based techniques such 
as computational fluid dynamics (CFD) and discrete 
element method (DEM). Industrial users require 
confidence in a model under the conditions it is to 
be applied in order to use it for design purposes and 
this can be a reason for slow acceptance of new 
techniques. This paper explores the validity of models 
and their validation using a variety of examples from 
heat transfer, reaction kinetics as well as particle and 
fluid flow, considering both traditional and modern 
computational-based approaches. 

The examples highlight that when comparing 
models to experimental data the mathematical form 
of the equations can contribute to an apparently 
good ‘fit’ while the actual adjustable parameter 
values can be poorly predicted; residuals or least 
squares alone are not a reliable indicator of quality 
of model fit or of model discrimination. When fitting 
models to experimental data, confidence in the 
adjustable parameter values is essential. A finite set 
of experimental data can fit many different models 
and often with many sets of parameter values. Not 
all of these models are of course useful for design. 

For that purpose it needs to be founded upon the real 
physics of the system and the adjustable parameters 
represent real quantities which can be measured, 
computed or estimated independently. The examples 
show also the importance of validating a model 
against more than one output parameter; instances 
are shown where a too simplistic validation exercise 
can be misleading. 

This paper shows therefore across a range of 
modelling approaches and applications that extreme 
care is required when validating a model. Models 
require validation under the conditions they are to be 
applied and against more than one output parameter, 
using appropriate data across appropriate scales 
and the paper encourages the practice of validating 
models in order to better persuade industry to adopt 
more advanced modelling approaches in the future. 

1. Introduction

While the way engineers work has transformed 
massively over the last 50 years, the tools used have not 
progressed as much as sometimes seems apparent. 
Despite the extensive use of computational tools to 
solve the basic design equations, many of the inputs 
that are used in these calculations are still derived from 
traditional dimensionless correlations; this is especially 
true of heat and mass transfer coefficients. In using 
these correlations we should however be aware of how 
they represent the data. 

Consider heat transfer data for fluidised beds 
correlated using classical dimensionless number 
relations. Dimensionless numbers are a critical part 
of chemical engineering analysis and each one holds 
its importance because it represents the ratio of two 
critical energy terms, forces or velocities. Heat transfer 
data analysis and correlation has classically included in 
Equations (i)–(iv):
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Nusselt No.: (ii)Nu hd K= /

Prandtl No.:	 Pr = Cp  μ / K	 (iii) 

Grashof No.: (iv)Gr g TS T D v= − ∞β ( ) /3 2
	

Grashof No.: (iv)Gr g TS T D v= − ∞β ( ) /3 2

Rowe (2) takes a heat transfer data set and plots the 
data on a series of log-log plots, all of which appear 
to represent a reasonable correlation with a few 
data points apparently as outliers; a selection of the 
correlations is shown in Figure 1. This all seems 
perfectly satisfactory until the raw data set is revealed 
as being random numbers! To explore how this can 
be so requires an examination of the structure of 
dimensionless correlations.

A typical heat transfer correlation is of the form 
(Equation (v)):

Nu a= RebPr c (v)

or expanding the dimensionless numbers in Equation 
(vi): 
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It is noticeable that a key parameter, d, the 
characteristic dimension, appears on both the right 
side and left side of the equation (as indeed does the 
thermal conductivity, K). This means that the correlation 
is in fact, generalising the variables, yz vs. xz and also 
plotted on log-log axes. Unless care is taken therefore 
this approach can be misleading.

The above should not be taken as an indictment of 
dimensionless correlations. They are an invaluable 
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Fig. 1. Dimensionless number correlations of heat transfer data. St = Stanton number; Re = Reynolds number; Gr = Grashof 
number; Nu = Nusselt number (Reproduced from Rowe (2))

Reynolds No.:	 Re = rdV/µ	 (i)
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method of representing data and their relationship with 
the key independent variables. Nor indeed should it 
be taken to indicate that they are the only offenders. 
From the world of reaction kinetics, the Langmuir-
Hinshelwood expression format is frequently used to 
represent adsorption influenced reaction rate data in 
Equation (vii):

r
kr KApA

mKBpB
n

KApA KBpB KCpC
P=

+ + +( )1
(vii)

Generalising this equation leads to the observation (3) 
that this is effectively (Equations (viii) and (ix)):

y
axp

bx q
=

+( )1
(viii)

or rearranging �

As with the heat transfer example, the expression 
features the same variable on both sides of the 
equation: it is thus equivalent to Equation (x):

y x xc. ∝ (x)	

It is hardly surprising therefore that this equation fits 
many data sets satisfactorily. 

To re-emphasise, as with dimensionless correlations, 
the use of Langmuir-Hinshelwood type kinetic 
expressions is not wrong; they are based on a specific 
model of adsorption and reaction phenomena. Rather, 
users should be aware of the mathematical robustness 
that arises from the forms of these equations.

Given the typical accepted accuracy of dimensionless 
transport coefficient expressions, variously cited at 
±20% to ±30%, engineers over the years have taken 
this into account by the judicious use of so-called 
‘design margins’. This is what lies behind the common 
practice of adding 20% to the answer to provide a 
counterweight to the possibility of under-design due to 
the inaccuracy of some of the design equations or the 
input parameters. If this is done by three successive 
designers then the degree of potential overdesign is 
now 1.23 = 1.75; a 75% overdesign. If a common cost 
scaling exponent of 0.7 is applied to this then the cost 
inflation of the designed plant is 1.750.7 ≈ 1.5; the plant 
cost is inflated by 50% (4). Use of inaccurate input data 
and subsequent use of design margins to account for 
that uncertainty has a significant impact on the final 
capital cost of the plant. 

The approach continues to be used and trusted due 
to the large amount of knowledge and expertise built up 

over 50 years in industry. New modelling approaches 
need to provide us with a similar amount of confidence. 
That requires validation and cross referencing.

Advanced modelling techniques such as CFD are 
widely used across many industries (5) such as 
combustion (6), aerospace design (7) and environmental 
hydraulics (8, 9). Within the chemical and process 
industries, for example, it is used in furnace design 
(10, 11). To extend use into other and new applications 
requires confidence in the model results. 

The industrial designer will want to use the model for 
scale up and design purposes. It must therefore give 
the correct answer where it is to be used; not just under 
conditions where it was derived and tested. This paper 
will explore the question: how valid does a model need 
to be and how and at what scale should it be validated?

2. Model Validation Examples in Reaction 
Kinetics

The accuracy of modelled or fitted kinetic parameters 
has been much debated due to the robust structure of 
kinetic expressions, as noted in Equations (viii)–(x). To 
demonstrate, two key, seminal papers will be reviewed 
below and their observations highlighted. 

2.1 Effect of Adsorption Model

Corma et al. addressed the issue of the quality of the 
adsorption model and its impact on a kinetic model (12). 
They selected nineteen adsorption influenced reaction 
rate data sets from the literature, all of which had been 
previously modelled by reaction kinetics expressions 
incorporating a Langmuir isotherm, even where a  
non-ideality was known to exist. The Langmuir isotherm 
assumes that the adsorption energy is independent of 
surface coverage, viz. it is constant. The alternative 
adsorption isotherm models allow a reduction in 
adsorption energy with increasing coverage:
•	Langmuir – adsorption energy independent of surface 

coverage,
•	Temkin – linear decrease with increased coverage,
•	Freundlich – logarithmic decrease with increased 

coverage.
It is a moot point as to whether these dependencies 

are real or whether they are simply a reflection of 
multiple adsorption sites of differing adsorption 
energies. That notwithstanding, the nineteen data sets 
were all refitted to reaction rate equations based on 
the three alternate adsorption models. The outcome is 
presented in Figure 2. 

y(1 + bx)q = axp	 (ix)

(x)
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The quality of fit is surprisingly good for most 
cases, remembering that in all cases experimental 
or data error will probably exceed ±5%. Not only is 
the same level of fitting obtained in most cases but 
also few cases actually give a poor fit. This approach 
therefore simply does not allow model discrimination 
or specifically in this case discrimination of the 
appropriate adsorption model. 

The authors observe that the effect of the distribution 
of site energies on the global kinetics is weak (12). 
Reviewing the same paper Keil observes that “the 
simple fitting of an [kinetic] equation hides significant 
features of reactions” (13). Berger et al. note that the 
mathematical forms of the fitting equations are too 
robust to enable discrimination (3). 

2.2 Reactor Simulation using a Kinetic Model

Another example from reaction kinetics explores 
the effect of kinetic model inaccuracies or errors on 
the results of a consequent reactor model (14). The 
authors used an idealised theoretical reaction model 
to generate ‘experimental’ data from virtual, in silico 
experiments. Different kinetic models are fitted to the 
‘data’ and these models are then used to simulate a 
reactor and the reactor model output results compared.

The selected test system was methanol synthesis 
(Equation (xi)), simplified by neglecting the presence of 
CO2 in the reaction model. 

CO + 2H2 ⇔ CH3OH	 (xi)

A mechanistic kinetic model, the ‘true’ kinetics were 
derived from an elementary step and thermodynamic 
analysis. In silico experiments using this ‘true’ kinetic 
model were carried out on a statistical experimental 
design (27 ‘experiments’) with flow, temp, total and 

partial pressures as prime variables and included 
outlier experiments. A 5% random error was applied 
to the results. Nineteen different kinetic models were 
fitted to these data and all gave a high quality fit based 
on residual least squares (R2 values all in excess of 
95%, many exceeding 99%). These kinetic models 
were then used in the same reactor design simulation: 
a steam raising converter with a specified shell side 
pressure (hence shell side temperature: 210ºC). The 
results were compared using the predicted methanol 
production rate (Figure 3) and temperature profiles 
(Figure 4). 

The predicted methanol production rates show a 
wide divergence; the reactor simulation based on the 
‘true’ kinetics gave a production rate of 35.5 te h–1. The 
explanation comes from Figure 4(a), which shows also 
a wide disparity in the predicted temperature profiles. 
Figure 4(b) shows that some of the kinetic models in 
fact predicted a runaway. It should be noted that the 
shell side temperature was set uncomfortably close to 
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Fig. 2. Effect of adsorption isotherm on kinetic model error (Based on data presented by Corma et al. (12))

Fig. 3. Predicted methanol production rate based on 
different kinetic models (Based on data presented by 
Berty et al. (14)) 
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the temperature at which the true kinetics predicted 
runaway (≈212ºC) which makes the results especially 
sensitive to minor differences in the kinetic model and 
rate predictions. Looking at this from a different viewing 
point, were the shell side temperature slightly higher a 
number of kinetic models with a high quality statistical 
fit (R2 ≈ 99%) would fail to predict a thermal runaway. 

2.3 Discussion

Quality of fit (residual squares: R2) is a poor criterion for 
model discrimination. The best predictive model in this 
study was in fact far from best in terms of fit. That is, R2 
alone is inadequate and inaccuracies not highlighted 
by this simple quality of fit criterion may lead to gross 
misrepresentation of reactor behaviour. Residual 
squares values indicating accuracies that exceed 
the experimental data confidence are meaningless 
statistically; more on this later. 

It has long been accepted and is well documented in 
the reaction engineering literature that a kinetic model 
must be tested thoroughly before reactor design is 
fixed and traditionally that has required independent 
data, measured on a different type of laboratory 
reactor or pilot unit (15). This is true in other fields 
as well.

Considering specifically the statistical model fitting 
exercise, a key issue is that simple univariate model 
validation is not adequate. In many cases the inherent 
parameter estimation is an ill-posed mathematical 
problem: there are more parameters than there are 
independent plus measured variables. The evaluation 
of quality of fit should extend to consideration of the 
statistical quality of the parameter estimates and a 
check for parameter cross correlation. 

More generally, arising also from the ill-posedness of 
the mathematical problem, fitting a model against one 
objective function can lead to a poor model. It does not 
validate the entire model and it does not support other 
model outputs. Different aspects of a model therefore 
require independent validation parameterisation. 

3. Assessing Parameter Estimate Quality

Fundamentally, fitted model parameters should act as 
estimates of physically meaningful values. To achieve 
this, it is of critical importance that the fitted parameters 
are statistically significant. A common approach is to 
assess uncertainty in parameter estimates using a 
95% confidence interval. The value of this is influenced 
by correlation between observations, noise in the data 
and degrees of freedom in the estimation process 
(16). When a confidence interval is greater than the 
estimated value, the fitting parameter can be seen as 
indiscriminate from zero and discounted.

The field of reaction kinetics has utilised more 
systematic and robust assessment processes. 
Parameter sensitivity on a local and global basis 
can be analysed via the Jacobian matrix (i.e. the 
impact parameter value perturbations have on 
model responses). Low sensitivity parameters can 
be systematically discounted from the fitting process 

(17–19). The significance of this with respect to model 
responses is then checked by the statistical F-test. 
Cross correlation between parameters is also assessed 
with these methods, the presence of which impedes 
reliable parameter estimates.

Principal component analysis (PCA) can also be 
applied to the sensitivity values of the fitted parameters. 

Fig. 4. Reactor temperature profiles calculated based on the different kinetic models: (a) acceptable temperature profiles; (b) 
runaway predicted (Based on data presented by Berty et al. (14))
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PCA provides a ranked series of eigenvalues which 
contain contributions from the fitting parameters. 
The most important parameters will have a strong 
contribution to the largest eigenvalues. Early examples 
include application to formaldehyde oxidation kinetics 
(20) and more recently there has been application 
in micro-kinetic (21) and molecular models (22). 
Elsewhere, methods to understand parameter range 
validity (23) and the impact of noise (24) have been 
incorporated into these approaches.

3.1 Case Study – Paste Extrusion Modelling 
using the Benbow-Bridgwater Equation

This example, from non-reaction kinetics, will 
exemplify the importance of considering parameter 
estimate quality in equation fitting. The Benbow-
Bridgwater equation to predict extrusion pressure 
drop (P, MPa) is described in Figure 5 (25) and 
contains five input variables (Vext, D0, D, N and L) and 
six fitting parameters (σ0, α, m, τ0, β and n). As fitting 
parameters outnumber input variables the problem 
may be ill-conditioned. While not necessarily ill-posed 
(where, strictly, the fitted parameters outnumber 
the quantity of data) this is clearly a situation that 

requires good structuring of the data set, relevance 
of the parameters and attention to the independence 
of the fitted parameters. As an illustration, with a well-
designed data set a good fit of a univariate polynomial 
or other multi-parameter f(x) can be achieved. By 
contrast with data inadequacy even a simple linear 
or power law fit can yield significant cross correlation 
and thus poor confidence intervals of the two fitting 
parameters. The original version of the Benbow-
Bridgwater equation features four parameters, each of 
which has a distinct physical relevance. The additional 
parameters, exponents m and n, have however often 
been used for so-called ‘enhancement of fit’.

To assess the six-parameter model, a 20 point 
ceramic extrusion dataset featuring five extrusion 
velocities (Vext) at four different die lengths (D) is 
utilised. All observations are repeated twice. Fitting 
the six-parameter model produced a high R2 (0.997), 
however, as Table I shows, the parameter estimates 
are not satisfactory. A large confidence interval is seen 
in β; α could not be estimated and β and n were strongly 
cross-correlated with one another.

Additional sum-of-squares (model vs. experimental 
error residual) analysis revealed that the presence 
of a fifth and sixth parameter in the model simply 
described experimental errors between the repeats. 
A t-test of m and n with reference to a value of 1 as 
the null hypothesis showed both to be insignificant 
as fitting parameters. Table I reveals that fixing m 
and n greatly improves the estimation quality of the 
other parameters, with minimal compromise to fit  
(R2 = 0.996). A final note on this topic comes from 
the original authors, “This six parameter fit to data is 
very frequently inappropriate or not warranted in view 
of the reliability of the primary data or the accuracy of 
the prediction required” (26). This important caveat is 
frequently overlooked.

Pressure drop P = P1 + P2

P1 P2

P = 2[σ0 + α·V     ]·Ln (      ) + 4[τ0 + β·V     ]·m
ext

D0
D · N0.5 ext

n L
D

Fig. 5. Schematic of paste extrusion and the associated 
Benbow-Bridgwater equation

Table I Parameter Estimates and Confidence Intervals for Four- and Six-parameter Modelsa

Six fitting parameters Four fitting parameters

Parameter Estimated value 
(2 sig. fig.)

95% Confidence interval  
(2 sig. fig.)

Estimated value  
(2 sig. fig.)

95% Confidence interval  
(2 sig. fig.)

σ0 0.41 ± 0.043 0.44 ± 0.047

α 87 (?) Indeterminate 12 ± 5.7

m 0.72 ± 0.056 1.0 FIXED

τ0 0.0060 ± 0.0020 0.0090 ± 0.0010

β 8.8 ± 6.9 1.8 ± 0.10

n 0.78 ± 0.11 1.0 FIXED
aParameter estimation carried out using Athena Visual Studio v.14.2, Stewart and Associates Engineering Software, Inc
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4. Simulation of Catalyst Loading

How catalyst pellets load into a reactor is critical to 
the subsequent performance of the reactor. This is 
especially true of tubular reactors with low tube to 
particle diameter ratios, typical of steam reforming, 
oxidation and hydrogenation reactors. To study this 
experimentally is difficult as it requires forming of the 
pellets and different pellet shapes if that is a parameter 
of the study, as well as the characterisation of the 
bed structure. The latter tends to need advanced and 
expensive measurement techniques, such as magnetic 
resonance imaging (MRI) (27) or X-ray micro-
tomography (XMT) (28). In view of these difficulties the 
potential to do this computationally was explored. At the 
time DEM codes were not sufficiently well developed 
for them to cope with complex particle shape so an 
alternative approach was used.

DigiPac® is a particle packing algorithm developed 
at the University of Leeds, UK, (29, 30) and appeared 
promising for the simulation of tube loading. In the 
code, space is discretised (Cartesian basis) and 
particles are represented by a coherent collection of 
voxels. The key components are a particle contact 
detection algorithm with particle behaviour on contact 
based on a Monte Carlo algorithm which itself has 
three parameters (rebounding, falling, rotating) which 
are assigned median values (0–1) on an empirical 
basis to fit measured validation data.

Preliminary attempts to validate this code against 
experimental MRI data indicated that although visually 
the results appeared comparable, it badly under-
predicted packing density (31). Constraining the range 
of the Monte Carlo random inputs led to satisfactory 
prediction of packing density. Detailed consideration of 
the actual bed structure, using pellet orientation data, 
indicated however that the detailed structure predicted 
was far from correct. 

Further improvements to the model included the 
incorporation of a Hertz-Mindlin contact model – allowing 
the inclusion of friction into the overall particle contact 
considerations. Re-validation of the model versions 
against XMT data showed that this final version not only 
predicted the packing density correctly but also gave a 
good representation of the bed structure (characterised 
again using pellet orientation distributions), Figure  6 
(32). Both poured and tapped bed densities and 
structures were adequately represented. 

Summarising, had validation been based only on 
packing density then that validation would have 

been false. Only by carrying out a model validation 
using adequate and sufficient objectives was model 
verification achieved.

5. Parameterisation and Validation of Discrete 
Element Method Particle Flow Models

Particle flow simulation using DEM is becoming more 
popular and more frequently used due to advances in 
both commercial and open-source codes coupled to the 
rapid advances in computing power. One of the issues 
impeding its implementation for industrial design is the 
selection of the key particle properties to be used as 
input parameters. Traditionally powder properties have 
been measured on bulk powders, whereas the DEM 
code is specifically based on single particles. 

5.1 Discrete Element Method Input Parameters

There are many parameters for a standard Hertz-
Mindlin-type contact model: shape, size, density, 
coefficients of static and rolling friction (particle-
particle, particle-wall), coefficient of restitution, 
Poisson ratio, Young’s and shear moduli. There are 
two primary schools of thought on how they should 
be selected:
(a)	 Use results of bulk experiments and ‘fit’ parameters 

to achieve the correct results using, for example the 
“sandpile” test (33), discharge from a flat bottomed 
hopper (33, 34), a shear tester (34) or a powder 
rheometer (35).

(b)	 Measure the parameters directly using single 
particles, for example the direct measurement 
of sliding friction (36), rolling friction (37) and 
coefficient of restitution (38, 39).

How best these values should be measured, estimated 
or ‘calibrated’ is a matter of much debate within the 
DEM community and on which the present authors 
have recently presented a much broader discussion 
elsewhere (40).

In the example to be presented here the input 
parameters were based as far as possible on directly 
measured values, some of which were taken from the 
literature.

5.2 Discrete Element Method Simulation and 
Validation 

The Turbula® Mixer is a commercial bench scale 
powder blender commonly used in the pharmaceutical 
industry in formulation development. It has a complex 
motion including rotational, gyrational and axial motion. 
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This complex motion was successfully imported into 
the commercial EDEM DEM code available from DEM 
Solutions Ltd, UK, and the representation assured by 
comparison with positron emission particle tracking 
(PEPT) data (41). Qualitative comparison with MRI 
based measurements for powder blending also looked 
promising (42). A more detailed, quantitative validation 
is however required. 

A detailed comparison of DEM predicted velocity 
distributions and those measured using PEPT was 
carried out. A global summary of the results is presented 
in Figure 7 (43). The overall comparison is reasonable, 
although a systematic under-prediction of the velocities 
by about 10% is observed. It is noted that a remarkably 
similar systematic error in velocity prediction against 
PEPT data is obtained in an independent study of a 
paddle mixer (44). These studies appear therefore 
to validate the DEM model to within a tolerance that 

is generally acceptable. Does this infer though that 
predictions of powder blending will also be correct?

Axial and radial dispersion coefficients were calculated 
from the raw velocity data for both DEM and PEPT 

(43). The comparison of the model and experimental 
dispersion coefficient values as a function of the Turbula 
speed is shown in Figure 8 (note that the y-axis scales 
are different on the axial and radial coefficient plots). 
DEM was found to over-predict dispersion coefficients 
by a factor of approximately two. 

While comfort may be drawn from the fact that DEM 
correctly predicts the regime change at approximately 
46 rpm, it should be noted that this can be predicted also 
using simple dimensionless number (Froude number) 
based analysis (45). Despite significant sensitivity work 
on the DEM input parameters, it is still not clear why the 
error in prediction of mixing related parameters such as 
dispersion coefficient is so poor (46). 

100	 200	 300	 400	 500

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

XMT
DEM (shaken)

1	 2	 3	 4	 5	 6	 7	 8	 9
Total

Wall

160

140

120

100

80
60
40
20

0 1	 2	 3	 4	 5	 6	 7	 8	 9
Total

Wall

120

100

80

60

40

20

0

XMT data	 Simulation

Fig. 6. Packing algorithm validation – packing density and orientation (Reprinted with permission from (32). Copyright (2009) 
American Chemical Society)

Height

P
ac

ki
ng

 fr
ac

tio
n

Orientation angle
Orientation angle



82	 © 2015 Johnson Matthey

http://dx.doi.org/10.1595/205651315X686804	 Johnson Matthey Technol. Rev., 2015, 59, (2)

It is tempting to blame the offset on the experimental 
method. However a detailed comparison of PEPT 
data with results from the well-established and 
cross-validated particle imaging velocimetry (PIV) 
method has been reported for studies in turbulent 
liquid mixing (47). These studies have indicated an 
excellent agreement overall, but noted a discrepancy 
at the impeller tip where the highest velocities and 
rapid direction changes prevail. The origin of these 
errors is the data averaging techniques used in the 
reconstruction algorithm that have subsequently 
been refined (48). The conclusion is that while at the 
higher Turbula speeds the PEPT may misrepresent 
the full trajectory of the particles, that under-prediction 
is smaller than the error observed in the dispersion 
coefficient prediction. It also would not explain why the 
error is almost independent of drum speed.

In the context of this communication it is simply 
important to note that while validation based on a 

simple velocity analysis indicates that the model could 
be used predictively, albeit with the caveat that average 
velocities appear to be over-estimated by around 10%, 
it does not accurately predict mixer performance. The 
validation of DEM models needs to be against data that 
are closely related to the final application. 

6. Validation of Computational Fluid Dynamics 
Models

CFD is now widely used in many fields, including 
reaction engineering. There has been a steady growth 
in its application to the ‘high fidelity’ modelling of flow, 
heat transfer and reaction in packed beds where the 
packing shapes are fully represented and meshed in 
detail (49–54), for example Figure 9, as opposed to a 
simplified ‘porous media’ type representation. 

First validations of detailed CFD were made against 
packed tube heat transfer data (55). Simulations of heat 
transfer for an idealised DT/dP = 2 structured bed of 44 
packed spheres compared favourably with experimental 
radial temperature profiles. Single-parameter validation 
work in the literature includes: measured pressure drop 
data (54, 56, 57), heat transfer correlations (58) and 
classic reaction engineering (pseudo-homogeneous 
1D) model results (59). All of these examples attempt 
to validate the model against a single model output 
parameter. They thus allow us to state only that the 
simulation matches the given interrogated output. 

The particle processing simulation examples above 
suggest that one simulation output which matches 
experimental data cannot be taken to imply that all other 
results are correct or indeed that the model components 
are adequate. Full validation of a CFD model requires 
detailed and multi-objective interrogation of model 
components. These are detailed below.
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6.1 Fluid Flow Fields and Turbulence Model

The published packed bed simulations predominantly 
use the k-ε turbulence closure model. Given the large 
specific surface area, extent of flow curvature and high 
particle Reynolds numbers (ReP) it is questionable 
whether the inherent assumption of isotropic turbulence 
is valid. A number of studies have compared MRI flow 
fields with both CFD (60, 61) and with Lattice Bolzmann 
direct numerical simulation (DNS) simulations  

(62–64). This is however for liquid (aqueous) laminar 
(or at best transitional) flow and does not help validate 

the selection of the turbulence closure. The impact of 
different turbulence closures has been evaluated by 
comparing the predicted heat transfer with established 
heat transfer correlations (65, 66), concluding that 
under their conditions of low ReP (transitional flow) 
there is no benefit in a more complex model over a 
single equation form such as that of Spalart Almaras.

Gas-surface contact and (momentum and heat) 
transfer is a critical aspect of packed tube reactor 
simulation. To evaluate how best to model this 
requires a reversion to basics. Comparative 
Reynolds-averaged Navier-Stokes (RANS) CFD and 

3.00e + 01
2.85e + 01
2.70e + 01
2.55e + 01
2.40e + 01
2.25e + 01
2.10e + 01
1.95e + 01
1.80e + 01
1.65e + 01
1.50e + 01
1.35e + 01
1.20e + 01
1.05e + 01
9.00e + 01
7.50e + 00
6.00e + 00
4.50e + 00
3.00e + 00
1.50e + 00
0.00e + 00

m/s

1.50e + 04
1.42e + 04
1.35e + 04
1.28e + 04
1.20e + 04
1.12e + 04
1.05e + 04
9.75e + 03
9.00e + 03
8.25e + 03
7.50e + 03
6.75e + 03
6.00e + 03
5.25e + 03
4.50e + 03
3.75e + 03
3.00e + 03
2.25e + 03
1.50e + 03
7.50e + 02
0.00e + 00
Pa

Fig. 9. CFD of flow through a packed tube showing: (a) flow pathlines; (b) velocity vectors; and (c) pressure contours (Reprinted 
with permission from (56). Copyright (2009) American Chemical Society)
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fundamental DNS based on employing large eddy 
simulations (LES) of gas flow over a single ‘sphere 
in a box’ at high Re have recently been carried out 
to ascertain the correct turbulence model (67) and 
the results checked against published experimental 
data. The results show that flow and transport can 
be accurately calculated using a RANS method with 
shear-stress transport (SST) k–ω closure provided 
that the mesh at the particle surface is fine enough 
and covers most of the boundary layer. 

6.2 Particle Contact Points

There are a large number of particle-particle and 
particle-wall contact points in a packed bed. This is 
especially a problem where a spherical packing is 
used. These glancing contact points lead to intractable 
meshing problems and it is thus necessary to ‘modify’ 
them to avoid a near-zero contact angle. Contact point 
representation is vital to different aspects of packed 
column simulation. It affects packing voidage (hence 
pressure drop), particle contact area (so conductive 
heat transfer) and particle spacing (so near surface 
flows).

A number of strategies are used in the literature:
•	Shrink particles slightly (gap) (55)
•	Expand particles slightly (overlap) (65)
•	Expanded contact (bridge) (68, 69)
•	Flatten the touching curved surfaces (caps) (70)

Dixon, Nijemeisland and Stitt classify and compare 
the four alternative approaches as shown in Figure 10 
(71). They report and compare RANS simulation 
results for all four approaches and note that all 
approaches have a significant effect on the simulation 
results. The effects differ however from one strategy 
to another. Global approaches significantly affect 
voidage and thus pressure drop. The removal of the 
contact point (gaps and caps) distorts particle-particle 
conductive heat transfer. Overall, bridges appear the 
best overall solution – but not always. This has been 
confirmed, but a sensitivity to the diameter of the 
bridge also noted (72).

6.3 Heat Transfer Validation

Packed bed heat transfer includes convective 
heat transfer from wall-to-particles via the gas and 
conductive heat transfer via particle contact points. 

Initially, the conduction model in the CFD was 
validated against a fundamental analysis based on 
well-established literature methods (73, 74). The 
‘zero flow’ CFD results, incorporating only solid phase 

conduction, showed good correspondence with the 
theoretical analysis for a range of input particle thermal 
conductivities (75) inferring that the conduction model 
is correct.

In the knowledge that conduction is correctly 
represented, validation of the heat transfer was 
made by comparison of experimental heat transfer 
results with analogous CFD simulations. Heat 
transfer experiments were carried out in a 98 mm 
diameter by 0.6 m packed tube at 2200<ReP<27,000 
with a heating jacket. The experimental data and 
comparative CFD results are shown in Figure  11 
for the tube packed with ceramic spheres  
(N = DT/dP = 7.44). The simulation results are in 
reasonable agreement with the experimental data 
(76). Given that all other elements of the model have 
been independently validated, this demonstrates 
the validity of the convection heat transfer model. 
Alternatively the convective aspect of gas-particle 
transfer has been validated by comparison with 
theoretical or empirical models for heat (77) and 
mass transfer respectively (78). 

6.4 Including Intra-pellet Diffusion and the 
Reaction

Guardo et al. have validated an intra-particle diffusion 
and reaction model against experimental data for 
different sized catalyst particles (79). For the steam 
reforming case, the above sections report the 
successive validation of key elements of the overall 
CFD model for flow and heat transfer. Attention can 
now therefore turn to assessing the inclusion of intra-
particle diffusion and reaction terms in an overall 
reaction model (80). 

Remove contact Enlarge contact

Global 
solution

Gap Overlaps

Local 
solution

Caps Bridges

Fig. 10. Classification of contact point modelling approaches 
(Reproduced from (71) by permission of Elsevier)
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Intraparticle diffusion was modelled assuming a 
uniform porosity and Fickian effective diffusivity 
evaluated based on the dusty gas model assuming 
pressure variation in the pellet is small compared to 
total external pressure (81) and user defined scalars 

for the species balances. The reaction rate terms 
were input by user-defined code based on the steam 
reforming kinetics of Hou and Hughes (82). 

For validation of this last model component a more 
structured pellet arrangement was used (83). The set 
up used for the experiments and simulation is shown 
in Figure 12 and used a ‘string’ of commercial pellets 
(Johnson Matthey Mini-Q 57-4). The reaction zone 
was six catalyst pellets, with a further six inert pellets 
in the feed and exit zone. The holes in the pellets were 
used effectively as thermo-wells and thus flow was 
only on the quasi-annular exterior.

Temperature profile measurements of a pellet string 
under methane steam reforming reaction conditions 
are shown in Figure 13. The simulation results are 
in reasonable agreement with the experiments, 
with an error in the order of only 2ºC–5ºC for the 
temperature predictions. Given that there are no 
adjustable parameters in this model other than 
those in the kinetic expression this seems to be a 
remarkably good result. This is a result, of course, 
of the fact that individual model components have 
been independently modified and validated and that 
in this final step only the diffusion and reaction terms 
represent any uncertainty.
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7. Conclusions

Advanced modelling techniques such as CFD and DEM 
are transforming the way chemical engineers carry out 
process and equipment research and evaluation. They 
provide massively enhanced levels of information and 
understanding on many complex process operations. 
In order for them to achieve widespread use as primary 
design tools it is essential to achieve the same levels 
of confidence that exist in traditional design methods 
and approaches. 

This paper has addressed the level and scope of 
validation required for models, considering some 
traditional modelling approaches as well as modern 
computationally intensive models. In considering 
kinetic and rheology models, the examples have 
highlighted that when fitting models to experimental 
data, confidence in the adjustable parameter values 
is essential if that constituent model is to be reliable 
when applied to a design. Reliance on residuals (least 
squares) alone will not reliably parameterise or validate 
a model. 

In developing or fitting a model one should also 
bear in mind the sagacious words of the physicist 
and statistician George Box (84). Often recalled 
only for the aphorism “All models are wrong; some 
are useful”, the extended version reminds us that 
we cannot always improve a model by the addition 
of parameters and terms: “Since all models are 

wrong the scientist cannot obtain a “correct” one 
by excessive elaboration. On the contrary following 
William of Occam he should seek an economical 
description of natural phenomena. Just as the ability 
to devise simple but evocative models is the signature 
of the great scientist so over-elaboration and over-
parameterization is often the mark of mediocrity.”

In the specific context of this paper it is noted that 
a finite set of experimental data can fit many different 
models and often with many sets of adjustable 
parameter values. Not all of these models will be useful 
for design. A model derived from the real physics of the 
system, where the parameters represent real quantities 
which can potentially be measured, computed or 
estimated independently from the data set, is much 
more likely to be useful for design. Furthermore, in 
accordance with Box’s observations above, the addition 
of parameters with limited physical meaning to achieve 
an enhancement of fit is not beneficial to the predictive 
quality of the model or indeed to the estimation of the 
true physical fitting parameters.

The above observations are even more important for 
models of increased complexity, typified by discrete 
particle and CFD models. Two examples of particle 
flow modelling were presented, demonstrating that 
although the respective models matched well the initial 
data set more detailed consideration showed that other 
facets or model outputs were very poorly predicted. 

Fig. 13. Comparison of CFD to experiment for: (a) methane conversion at different inlet gas temperatures, methane gas feed; 
(b) inside active particle temperature (K) for the different inlet gas temperatures at S:C ratio = 4.5, methane gas feed (Redrawn 
based on data in (83)) 
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Single-objective validation is not enough. It is 
necessary to evaluate the veracity of the underpinning 
model components and closures. Detailed validation of 
detailed models can be carried out using appropriate 
data and at appropriate scales and this is to be 
encouraged if the industry is to adopt successful 
modelling approaches in future.

This paper is based on a Keynote Lecture given at the 
9th European Congress in Chemical Engineering, Den 
Haag, Netherlands, 21st–24th April 2013.
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