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Models, which underpin all chemical engineering
design work, vary widely in their complexity, ranging
from traditional dimensionless number correlations
through to modern computer based techniques such
as computational fluid dynamics (CFD) and discrete
element method (DEM). Industrial users require
confidence in a model under the conditions it is to
be applied in order to use it for design purposes and
this can be a reason for slow acceptance of new
techniques. This paper explores the validity of models
and their validation using a variety of examples from
heat transfer, reaction kinetics as well as particle and
fluid flow, considering both traditional and modern
computational-based approaches.

The examples highlight that when comparing
models to experimental data the mathematical form
of the equations can contribute to an apparently
good ‘fitt while the actual adjustable parameter
values can be poorly predicted; residuals or least
squares alone are not a reliable indicator of quality
of model fit or of model discrimination. When fitting
models to experimental data, confidence in the
adjustable parameter values is essential. A finite set
of experimental data can fit many different models
and often with many sets of parameter values. Not
all of these models are of course useful for design.

For that purpose it needs to be founded upon the real
physics of the system and the adjustable parameters
represent real quantities which can be measured,
computed or estimated independently. The examples
show also the importance of validating a model
against more than one output parameter; instances
are shown where a too simplistic validation exercise
can be misleading.

This paper shows therefore across a range of
modelling approaches and applications that extreme
care is required when validating a model. Models
require validation under the conditions they are to be
applied and against more than one output parameter,
using appropriate data across appropriate scales
and the paper encourages the practice of validating
models in order to better persuade industry to adopt
more advanced modelling approaches in the future.

1. Introduction

While the way engineers work has transformed
massively over the last 50 years, the tools used have not
progressed as much as sometimes seems apparent.
Despite the extensive use of computational tools to
solve the basic design equations, many of the inputs
that are used in these calculations are still derived from
traditional dimensionless correlations; this is especially
true of heat and mass transfer coefficients. In using
these correlations we should however be aware of how
they represent the data.

Consider heat transfer data for fluidised beds
correlated using classical dimensionless number
relations. Dimensionless numbers are a critical part
of chemical engineering analysis and each one holds
its importance because it represents the ratio of two
critical energy terms, forces or velocities. Heat transfer
data analysis and correlation has classically included in
Equations (i)—(iv):
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Reynolds No.: Re = pdV/u (i)
Nusselt No.: Nu =hd/K (i)
Prandtl No.: Pr=C, u/K (iii)
Grashof No..  Gr = gp(Tg ~T.)D> V2 (W)

Rowe (2) takes a heat transfer data set and plots the
data on a series of log-log plots, all of which appear
to represent a reasonable correlation with a few
data points apparently as outliers; a selection of the
correlations is shown in Figure 1. This all seems
perfectly satisfactory until the raw data set is revealed
as being random numbers! To explore how this can
be so requires an examination of the structure of
dimensionless correlations.

A typical heat transfer correlation is of the form
(Equation (v)):

b

Nu = aRe”Pr° (v)

or expanding the dimensionless numbers in Equation

(vi):

b C c
hd av u
a9 _ gl PV 2P (vi)
K u K
It is noticeable that a key parameter, d, the

characteristic dimension, appears on both the right
side and left side of the equation (as indeed does the
thermal conductivity, K). This means that the correlation
is in fact, generalising the variables, yz vs. xz and also
plotted on log-log axes. Unless care is taken therefore
this approach can be misleading.

The above should not be taken as an indictment of
dimensionless correlations. They are an invaluable
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Fig. 1. Dimensionless number correlations of heat transfer data. St = Stanton number; Re = Reynolds number; Gr = Grashof

number; Nu = Nusselt number (Reproduced from Rowe (2))
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method of representing data and their relationship with
the key independent variables. Nor indeed should it
be taken to indicate that they are the only offenders.
From the world of reaction kinetics, the Langmuir-
Hinshelwood expression format is frequently used to
represent adsorption influenced reaction rate data in
Equation (vii):

m n
krKaPp KPR

r= p (vii)
(1+KApA +KBpB +KCpC)

Generalising this equation leads to the observation (3)

that this is effectively (Equations (viii) and (ix)):

y = ax” (viii)
(1+ bx)?
or rearranging y(1 + bx)? = ax® (ix)

As with the heat transfer example, the expression
features the same variable on both sides of the
equation: it is thus equivalent to Equation (x):

y.X oc x° (x)

It is hardly surprising therefore that this equation fits
many data sets satisfactorily.

To re-emphasise, as with dimensionless correlations,
the use of Langmuir-Hinshelwood type kinetic
expressions is not wrong; they are based on a specific
model of adsorption and reaction phenomena. Rather,
users should be aware of the mathematical robustness
that arises from the forms of these equations.

Given the typical accepted accuracy of dimensionless
transport coefficient expressions, variously cited at
1+20% to +30%, engineers over the years have taken
this into account by the judicious use of so-called
‘design margins’. This is what lies behind the common
practice of adding 20% to the answer to provide a
counterweight to the possibility of under-design due to
the inaccuracy of some of the design equations or the
input parameters. If this is done by three successive
designers then the degree of potential overdesign is
now 1.2% = 1.75; a 75% overdesign. If a common cost
scaling exponent of 0.7 is applied to this then the cost
inflation of the designed plant is 1.75%7 = 1.5; the plant
cost is inflated by 50% (4). Use of inaccurate input data
and subsequent use of design margins to account for
that uncertainty has a significant impact on the final
capital cost of the plant.

The approach continues to be used and trusted due
to the large amount of knowledge and expertise built up

over 50 years in industry. New modelling approaches
need to provide us with a similar amount of confidence.
That requires validation and cross referencing.

Advanced modelling techniques such as CFD are
widely used across many industries (5) such as
combustion (6), aerospace design (7)and environmental
hydraulics (8, 9). Within the chemical and process
industries, for example, it is used in furnace design
(10, 11). To extend use into other and new applications
requires confidence in the model results.

The industrial designer will want to use the model for
scale up and design purposes. It must therefore give
the correct answer where it is to be used; not just under
conditions where it was derived and tested. This paper
will explore the question: how valid does a model need
to be and how and at what scale should it be validated?

2. Model Validation Examples in Reaction
Kinetics

The accuracy of modelled or fitted kinetic parameters
has been much debated due to the robust structure of
kinetic expressions, as noted in Equations (viii)—(x). To
demonstrate, two key, seminal papers will be reviewed
below and their observations highlighted.

2.1 Effect of Adsorption Model

Corma et al. addressed the issue of the quality of the
adsorption model and its impact on a kinetic model (12).
They selected nineteen adsorption influenced reaction
rate data sets from the literature, all of which had been
previously modelled by reaction kinetics expressions
incorporating a Langmuir isotherm, even where a
non-ideality was known to exist. The Langmuir isotherm
assumes that the adsorption energy is independent of
surface coverage, viz. it is constant. The alternative
adsorption isotherm models allow a reduction in
adsorption energy with increasing coverage:
» Langmuir — adsorption energy independent of surface
coverage,
» Temkin — linear decrease with increased coverage,
* Freundlich — logarithmic decrease with increased
coverage.

It is a moot point as to whether these dependencies
are real or whether they are simply a reflection of
multiple adsorption sites of differing adsorption
energies. That notwithstanding, the nineteen data sets
were all refitted to reaction rate equations based on
the three alternate adsorption models. The outcome is
presented in Figure 2.
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Fig. 2. Effect of adsorption isotherm on kinetic model error (Based on data presented by Corma et al. (12))

The quality of fit is surprisingly good for most
cases, remembering that in all cases experimental
or data error will probably exceed +5%. Not only is
the same level of fitting obtained in most cases but
also few cases actually give a poor fit. This approach
therefore simply does not allow model discrimination
or specifically in this case discrimination of the
appropriate adsorption model.

The authors observe that the effect of the distribution
of site energies on the global kinetics is weak (12).
Reviewing the same paper Keil observes that “the
simple fitting of an [kinetic] equation hides significant
features of reactions” (13). Berger et al. note that the
mathematical forms of the fitting equations are too
robust to enable discrimination (3).

2.2 Reactor Simulation using a Kinetic Model

Another example from reaction kinetics explores
the effect of kinetic model inaccuracies or errors on
the results of a consequent reactor model (14). The
authors used an idealised theoretical reaction model
to generate ‘experimental’ data from virtual, in silico
experiments. Different kinetic models are fitted to the
‘data’ and these models are then used to simulate a
reactor and the reactor model output results compared.

The selected test system was methanol synthesis
(Equation (xi)), simplified by neglecting the presence of
CO,, in the reaction model.

CO + 2H, < CH;0H (xi)

A mechanistic kinetic model, the ‘true’ kinetics were
derived from an elementary step and thermodynamic
analysis. In silico experiments using this ‘true’ kinetic
model were carried out on a statistical experimental
design (27 ‘experiments’) with flow, temp, total and

partial pressures as prime variables and included
outlier experiments. A 5% random error was applied
to the results. Nineteen different kinetic models were
fitted to these data and all gave a high quality fit based
on residual least squares (R? values all in excess of
95%, many exceeding 99%). These kinetic models
were then used in the same reactor design simulation:
a steam raising converter with a specified shell side
pressure (hence shell side temperature: 210°C). The
results were compared using the predicted methanol
production rate (Figure 3) and temperature profiles
(Figure 4).

The predicted methanol production rates show a
wide divergence; the reactor simulation based on the
‘true’ kinetics gave a production rate of 35.5te h™'. The
explanation comes from Figure 4(a), which shows also
a wide disparity in the predicted temperature profiles.
Figure 4(b) shows that some of the kinetic models in
fact predicted a runaway. It should be noted that the
shell side temperature was set uncomfortably close to

Methanol production, te h™'

0._
12 3456 79 10112131415161718
Model reference

Fig. 3. Predicted methanol production rate based on
different kinetic models (Based on data presented by
Berty et al. (14))
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Fig. 4. Reactor temperature profiles calculated based on the different kinetic models: (a) acceptable temperature profiles; (b)

runaway predicted (Based on data presented by Berty et al. (14))

the temperature at which the true kinetics predicted
runaway (=212°C) which makes the results especially
sensitive to minor differences in the kinetic model and
rate predictions. Looking at this from a different viewing
point, were the shell side temperature slightly higher a
number of kinetic models with a high quality statistical
fit (R = 99%) would fail to predict a thermal runaway.

2.3 Discussion

Quality of fit (residual squares: R?) is a poor criterion for
model discrimination. The best predictive model in this
study was in fact far from best in terms of fit. That is, R?
alone is inadequate and inaccuracies not highlighted
by this simple quality of fit criterion may lead to gross
misrepresentation of reactor behaviour. Residual
squares values indicating accuracies that exceed
the experimental data confidence are meaningless
statistically; more on this later.

It has long been accepted and is well documented in
the reaction engineering literature that a kinetic model
must be tested thoroughly before reactor design is
fixed and traditionally that has required independent
data, measured on a different type of laboratory
reactor or pilot unit (15). This is true in other fields
as well.

Considering specifically the statistical model fitting
exercise, a key issue is that simple univariate model
validation is not adequate. In many cases the inherent
parameter estimation is an ill-posed mathematical
problem: there are more parameters than there are
independent plus measured variables. The evaluation
of quality of fit should extend to consideration of the
statistical quality of the parameter estimates and a
check for parameter cross correlation.

More generally, arising also from the ill-posedness of
the mathematical problem, fitting a model against one
objective function can lead to a poor model. It does not
validate the entire model and it does not support other
model outputs. Different aspects of a model therefore
require independent validation parameterisation.

3. Assessing Parameter Estimate Quality

Fundamentally, fitted model parameters should act as
estimates of physically meaningful values. To achieve
this, it is of critical importance that the fitted parameters
are statistically significant. A common approach is to
assess uncertainty in parameter estimates using a
95% confidence interval. The value of this is influenced
by correlation between observations, noise in the data
and degrees of freedom in the estimation process
(16). When a confidence interval is greater than the
estimated value, the fitting parameter can be seen as
indiscriminate from zero and discounted.

The field of reaction kinetics has utilised more
systematic and robust assessment processes.
Parameter sensitivity on a local and global basis
can be analysed via the Jacobian matrix (i.e. the
impact parameter value perturbations have on
model responses). Low sensitivity parameters can
be systematically discounted from the fitting process
(17-19). The significance of this with respect to model
responses is then checked by the statistical F-test.
Cross correlation between parameters is also assessed
with these methods, the presence of which impedes
reliable parameter estimates.

Principal component analysis (PCA) can also be
applied to the sensitivity values of the fitted parameters.
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PCA provides a ranked series of eigenvalues which
contain contributions from the fitting parameters.
The most important parameters will have a strong
contribution to the largest eigenvalues. Early examples
include application to formaldehyde oxidation kinetics
(20) and more recently there has been application
in micro-kinetic (21) and molecular models (22).
Elsewhere, methods to understand parameter range
validity (23) and the impact of noise (24) have been
incorporated into these approaches.

3.1 Case Study - Paste Extrusion Modelling
using the Benbow-Bridgwater Equation

This example, from non-reaction kinetics, will
exemplify the importance of considering parameter
estimate quality in equation fitting. The Benbow-
Bridgwater equation to predict extrusion pressure
drop (P, MPa) is described in Figure 5 (25) and
contains five input variables (V,;, Dy, D, N and L) and
six fitting parameters (o, a, m, 1y, B and n). As fitting
parameters outnumber input variables the problem
may be ill-conditioned. While not necessarily ill-posed
(where, strictly, the fitted parameters outnumber
the quantity of data) this is clearly a situation that

Pressure drop P= P4 + P,

D,
P=2[op + a Vext I'Ln (W) +4[1y + B'Vgxt ].l_5

Fig. 5. Schematic of paste extrusion and the associated
Benbow-Bridgwater equation

requires good structuring of the data set, relevance
of the parameters and attention to the independence
of the fitted parameters. As an illustration, with a well-
designed data set a good fit of a univariate polynomial
or other multi-parameter f(x) can be achieved. By
contrast with data inadequacy even a simple linear
or power law fit can yield significant cross correlation
and thus poor confidence intervals of the two fitting
parameters. The original version of the Benbow-
Bridgwater equation features four parameters, each of
which has a distinct physical relevance. The additional
parameters, exponents m and n, have however often
been used for so-called ‘enhancement of fit'.

To assess the six-parameter model, a 20 point
ceramic extrusion dataset featuring five extrusion
velocities (V) at four different die lengths (D) is
utilised. All observations are repeated twice. Fitting
the six-parameter model produced a high R? (0.997),
however, as Table | shows, the parameter estimates
are not satisfactory. A large confidence interval is seen
in B; a could not be estimated and 8 and n were strongly
cross-correlated with one another.

Additional sum-of-squares (model vs. experimental
error residual) analysis revealed that the presence
of a fifth and sixth parameter in the model simply
described experimental errors between the repeats.
A t-test of m and n with reference to a value of 1 as
the null hypothesis showed both to be insignificant
as fitting parameters. Table | reveals that fixing m
and n greatly improves the estimation quality of the
other parameters, with minimal compromise to fit
(R? = 0.996). A final note on this topic comes from
the original authors, “This six parameter fit to data is
very frequently inappropriate or not warranted in view
of the reliability of the primary data or the accuracy of
the prediction required” (26). This important caveat is
frequently overlooked.

Table | Parameter Estimates and Confidence Intervals for Four- and Six-parameter Models®

Six fitting parameters

Parameter Estimated value

95% Confidence interval

Four fitting parameters

Estimated value 95% Confidence interval

(2 sig. fig.) (2 sig. fig.) (2 sig. fig.) (2 sig. fig.)
(o) 0.41 +0.043 0.44 +0.047
a 87 (?) Indeterminate 12 +57
m 0.72 + 0.056 1.0 FIXED
To 0.0060 +0.0020 0.0090 +0.0010
B 8.8 +6.9 1.8 +0.10
n 0.78 +0.11 1.0 FIXED

8Parameter estimation carried out using Athena Visual Studio v.14.2, Stewart and Associates Engineering Software, Inc
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4. Simulation of Catalyst Loading

How catalyst pellets load into a reactor is critical to
the subsequent performance of the reactor. This is
especially true of tubular reactors with low tube to
particle diameter ratios, typical of steam reforming,
oxidation and hydrogenation reactors. To study this
experimentally is difficult as it requires forming of the
pellets and different pellet shapes if that is a parameter
of the study, as well as the characterisation of the
bed structure. The latter tends to need advanced and
expensive measurement techniques, such as magnetic
resonance imaging (MRI) (27) or X-ray micro-
tomography (XMT) (28). In view of these difficulties the
potential to do this computationally was explored. At the
time DEM codes were not sufficiently well developed
for them to cope with complex particle shape so an
alternative approach was used.

DigiPac® is a particle packing algorithm developed
at the University of Leeds, UK, (29, 30) and appeared
promising for the simulation of tube loading. In the
code, space is discretised (Cartesian basis) and
particles are represented by a coherent collection of
voxels. The key components are a particle contact
detection algorithm with particle behaviour on contact
based on a Monte Carlo algorithm which itself has
three parameters (rebounding, falling, rotating) which
are assigned median values (0-1) on an empirical
basis to fit measured validation data.

Preliminary attempts to validate this code against
experimental MRI data indicated that although visually
the results appeared comparable, it badly under-
predicted packing density (31). Constraining the range
of the Monte Carlo random inputs led to satisfactory
prediction of packing density. Detailed consideration of
the actual bed structure, using pellet orientation data,
indicated however that the detailed structure predicted
was far from correct.

Further improvements to the model included the
incorporation of a Hertz-Mindlin contact model—allowing
the inclusion of friction into the overall particle contact
considerations. Re-validation of the model versions
against XMT data showed that this final version not only
predicted the packing density correctly but also gave a
good representation of the bed structure (characterised
again using pellet orientation distributions), Figure 6
(32). Both poured and tapped bed densities and
structures were adequately represented.

Summarising, had validation been based only on
packing density then that validation would have

been false. Only by carrying out a model validation
using adequate and sufficient objectives was model
verification achieved.

5. Parameterisation and Validation of Discrete
Element Method Particle Flow Models

Particle flow simulation using DEM is becoming more
popular and more frequently used due to advances in
both commercial and open-source codes coupled to the
rapid advances in computing power. One of the issues
impeding its implementation for industrial design is the
selection of the key particle properties to be used as
input parameters. Traditionally powder properties have
been measured on bulk powders, whereas the DEM
code is specifically based on single particles.

5.1 Discrete Element Method Input Parameters

There are many parameters for a standard Hertz-
Mindlin-type contact model: shape, size, density,
coefficients of static and rolling friction (particle-
particle, particle-wall), coefficient of restitution,
Poisson ratio, Young’s and shear moduli. There are
two primary schools of thought on how they should
be selected:

(a) Use results of bulk experiments and ‘fit’ parameters
to achieve the correct results using, for example the
“sandpile” test (33), discharge from a flat bottomed
hopper (33, 34), a shear tester (34) or a powder
rheometer (35).

(b) Measure the parameters directly using single
particles, for example the direct measurement
of sliding friction (36), rolling friction (37) and
coefficient of restitution (38, 39).

How best these values should be measured, estimated
or ‘calibrated’ is a matter of much debate within the
DEM community and on which the present authors
have recently presented a much broader discussion
elsewhere (40).

In the example to be presented here the input
parameters were based as far as possible on directly
measured values, some of which were taken from the
literature.

5.2 Discrete Element Method Simulation and
Validation

The Turbula® Mixer is a commercial bench scale
powder blender commonly used in the pharmaceutical
industry in formulation development. It has a complex
motion including rotational, gyrational and axial motion.
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Fig. 6. Packing algorithm validation — packing density and orientation (Reprinted with permission from (32). Copyright (2009)

American Chemical Society)

This complex motion was successfully imported into
the commercial EDEM DEM code available from DEM
Solutions Ltd, UK, and the representation assured by
comparison with positron emission particle tracking
(PEPT) data (41). Qualitative comparison with MRI
based measurements for powder blending also looked
promising (42). A more detailed, quantitative validation
is however required.

A detailed comparison of DEM predicted velocity
distributions and those measured using PEPT was
carried out. Aglobal summary of the results is presented
in Figure 7 (43). The overall comparison is reasonable,
although a systematic under-prediction of the velocities
by about 10% is observed. It is noted that a remarkably
similar systematic error in velocity prediction against
PEPT data is obtained in an independent study of a
paddle mixer (44). These studies appear therefore
to validate the DEM model to within a tolerance that

is generally acceptable. Does this infer though that
predictions of powder blending will also be correct?

Axial and radial dispersion coefficients were calculated
from the raw velocity data for both DEM and PEPT
(43). The comparison of the model and experimental
dispersion coefficient values as a function of the Turbula
speed is shown in Figure 8 (note that the y-axis scales
are different on the axial and radial coefficient plots).
DEM was found to over-predict dispersion coefficients
by a factor of approximately two.

While comfort may be drawn from the fact that DEM
correctly predicts the regime change at approximately
46 rpm, it should be noted that this can be predicted also
using simple dimensionless number (Froude number)
based analysis (45). Despite significant sensitivity work
on the DEM input parameters, it is still not clear why the
error in prediction of mixing related parameters such as
dispersion coefficient is so poor (46).
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Fig. 7. Comparison of PEPT and DEM velocity data
(Based on data in (46))

It is tempting to blame the offset on the experimental
method. However a detailed comparison of PEPT
data with results from the well-established and
cross-validated particle imaging velocimetry (PIV)
method has been reported for studies in turbulent
liquid mixing (47). These studies have indicated an
excellent agreement overall, but noted a discrepancy
at the impeller tip where the highest velocities and
rapid direction changes prevail. The origin of these
errors is the data averaging techniques used in the
reconstruction algorithm that have subsequently
been refined (48). The conclusion is that while at the
higher Turbula speeds the PEPT may misrepresent
the full trajectory of the particles, that under-prediction
is smaller than the error observed in the dispersion
coefficient prediction. It also would not explain why the
error is almost independent of drum speed.

In the context of this communication it is simply
important to note that while validation based on a

simple velocity analysis indicates that the model could
be used predictively, albeit with the caveat that average
velocities appear to be over-estimated by around 10%,
it does not accurately predict mixer performance. The
validation of DEM models needs to be against data that
are closely related to the final application.

6. Validation of Computational Fluid Dynamics
Models

CFD is now widely used in many fields, including
reaction engineering. There has been a steady growth
in its application to the ‘high fidelity’ modelling of flow,
heat transfer and reaction in packed beds where the
packing shapes are fully represented and meshed in
detail (49-54), for example Figure 9, as opposed to a
simplified ‘porous media’ type representation.

First validations of detailed CFD were made against
packed tube heat transfer data (55). Simulations of heat
transfer for an idealised D+/dp = 2 structured bed of 44
packed spheres compared favourably with experimental
radial temperature profiles. Single-parameter validation
work in the literature includes: measured pressure drop
data (54, 56, 57), heat transfer correlations (58) and
classic reaction engineering (pseudo-homogeneous
1D) model results (59). All of these examples attempt
to validate the model against a single model output
parameter. They thus allow us to state only that the
simulation matches the given interrogated output.

The particle processing simulation examples above
suggest that one simulation output which matches
experimental data cannot be taken to imply that all other
results are correct or indeed that the model components
are adequate. Full validation of a CFD model requires
detailed and multi-objective interrogation of model
components. These are detailed below.

140
120 4 —+— EDEM: Dx
100 A —=— EDEM: Dr

: + PEPT: Dx
602 & PEPT. Dr

Fig. 8. Comparison of PEPT and DEM dispersion coefficients (Redrawn based on data in (43))
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Fig. 9. CFD of flow through a packed tube showing: (a) flow pathlines; (b) velocity vectors; and (c) pressure contours (Reprinted
with permission from (56). Copyright (2009) American Chemical Society)

6.1 Fluid Flow Fields and Turbulence Model

The published packed bed simulations predominantly
use the k-¢ turbulence closure model. Given the large
specific surface area, extent of flow curvature and high
particle Reynolds numbers (Rep) it is questionable
whether the inherent assumption of isotropic turbulence
is valid. A number of studies have compared MRI flow
fields with both CFD (60, 61) and with Lattice Bolzmann
direct numerical simulation (DNS) simulations
(62—64). This is however for liquid (aqueous) laminar
(or at best transitional) flow and does not help validate

the selection of the turbulence closure. The impact of
different turbulence closures has been evaluated by
comparing the predicted heat transfer with established
heat transfer correlations (65, 66), concluding that
under their conditions of low Rep (transitional flow)
there is no benefit in a more complex model over a
single equation form such as that of Spalart Almaras.
Gas-surface contact and (momentum and heat)
transfer is a critical aspect of packed tube reactor
simulation. To evaluate how best to model this
requires a reversion to basics. Comparative
Reynolds-averaged Navier-Stokes (RANS) CFD and
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fundamental DNS based on employing large eddy
simulations (LES) of gas flow over a single ‘sphere
in a box’ at high Re have recently been carried out
to ascertain the correct turbulence model (67) and
the results checked against published experimental
data. The results show that flow and transport can
be accurately calculated using a RANS method with
shear-stress transport (SST) k—w closure provided
that the mesh at the particle surface is fine enough
and covers most of the boundary layer.

6.2 Particle Contact Points

There are a large number of particle-particle and
particle-wall contact points in a packed bed. This is
especially a problem where a spherical packing is
used. These glancing contact points lead to intractable
meshing problems and it is thus necessary to ‘modify’
them to avoid a near-zero contact angle. Contact point
representation is vital to different aspects of packed
column simulation. It affects packing voidage (hence
pressure drop), particle contact area (so conductive
heat transfer) and particle spacing (so near surface
flows).

A number of strategies are used in the literature:
« Shrink particles slightly (gap) (55)
« Expand particles slightly (overlap) (65)
» Expanded contact (bridge) (68, 69)
« Flatten the touching curved surfaces (caps) (70)

Dixon, Nijemeisland and Stitt classify and compare
the four alternative approaches as shown in Figure 10
(71). They report and compare RANS simulation
results for all four approaches and note that all
approaches have a significant effect on the simulation
results. The effects differ however from one strategy
to another. Global approaches significantly affect
voidage and thus pressure drop. The removal of the
contact point (gaps and caps) distorts particle-particle
conductive heat transfer. Overall, bridges appear the
best overall solution — but not always. This has been
confirmed, but a sensitivity to the diameter of the
bridge also noted (72).

6.3 Heat Transfer Validation

Packed bed heat transfer includes convective
heat transfer from wall-to-particles via the gas and
conductive heat transfer via particle contact points.

Initially, the conduction model in the CFD was
validated against a fundamental analysis based on
well-established literature methods (73, 74). The
‘zero flow’ CFD results, incorporating only solid phase

Remove contact | Enlarge contact

Global Gap Overlaps
solution : :

Local Caps Bridges
solution

Fig. 10. Classification of contact point modelling approaches
(Reproduced from (71) by permission of Elsevier)

conduction, showed good correspondence with the
theoretical analysis for a range of input particle thermal
conductivities (75) inferring that the conduction model
is correct.

In the knowledge that conduction is correctly
represented, validation of the heat transfer was
made by comparison of experimental heat transfer
results with analogous CFD simulations. Heat
transfer experiments were carried out in a 98 mm
diameter by 0.6 m packed tube at 2200<Rep<27,000
with a heating jacket. The experimental data and
comparative CFD results are shown in Figure 11
for the tube packed with ceramic spheres
(N = Di/dp = 7.44). The simulation results are in
reasonable agreement with the experimental data
(76). Given that all other elements of the model have
been independently validated, this demonstrates
the validity of the convection heat transfer model.
Alternatively the convective aspect of gas-particle
transfer has been validated by comparison with
theoretical or empirical models for heat (77) and
mass transfer respectively (78).

6.4 Including Intra-pellet Diffusion and the
Reaction

Guardo et al. have validated an intra-particle diffusion
and reaction model against experimental data for
different sized catalyst particles (79). For the steam
reforming case, the above sections report the
successive validation of key elements of the overall
CFD model for flow and heat transfer. Attention can
now therefore turn to assessing the inclusion of intra-
particle diffusion and reaction terms in an overall
reaction model (80).
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Fig. 11. Comparison of CFD and experimental heat transfer
data (Reproduced from Dixon et al. (76))

Intraparticle diffusion was modelled assuming a
uniform porosity and Fickian effective diffusivity
evaluated based on the dusty gas model assuming
pressure variation in the pellet is small compared to
total external pressure (81) and user defined scalars

for the species balances. The reaction rate terms
were input by user-defined code based on the steam
reforming kinetics of Hou and Hughes (82).

For validation of this last model component a more
structured pellet arrangement was used (83). The set
up used for the experiments and simulation is shown
in Figure 12 and used a ‘string’ of commercial pellets
(Johnson Matthey Mini-Q 57-4). The reaction zone
was six catalyst pellets, with a further six inert pellets
in the feed and exit zone. The holes in the pellets were
used effectively as thermo-wells and thus flow was
only on the quasi-annular exterior.

Temperature profile measurements of a pellet string
under methane steam reforming reaction conditions
are shown in Figure 13. The simulation results are
in reasonable agreement with the experiments,
with an error in the order of only 2°C-5°C for the
temperature predictions. Given that there are no
adjustable parameters in this model other than
those in the kinetic expression this seems to be a
remarkably good result. This is a result, of course,
of the fact that individual model components have
been independently modified and validated and that
in this final step only the diffusion and reaction terms
represent any uncertainty.

(a) (b)
| Hydrogen

ples
—

A

\

*. 3 external thermocou

=IN[W[A~ O O

6 active pellets

~

~
~
~

mass fraction

Methane Temperature, K
mass fraction
0.030 0.156 895
0.029
0.152

0.028 893
0.027 0.148 891
0.026 0.144 ,, 889
0.025 - 887
0.024 0.140 885
g-ggg 0436 883
0.021 0.132 881
0.020 0.128 879
0.019 0.124 877
0.018 0.120 875
0.017 873
0.016 0.116 871
g.gli 0.112 869
0.013 0.108 867
0.012 0.104 "o ¢ 865

Fig. 12. Validation of CFD model including reaction and diffusion: (a) experimental set up; (b) graphical results from CFD

(Reproduced from (83) by permission of Elsevier)
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Fig. 13. Comparison of CFD to experiment for: (a) methane conversion at different inlet gas temperatures, methane gas feed;
(b) inside active particle temperature (K) for the different inlet gas temperatures at S:C ratio = 4.5, methane gas feed (Redrawn

based on data in (83))

7. Conclusions

Advanced modelling techniques such as CFD and DEM
are transforming the way chemical engineers carry out
process and equipment research and evaluation. They
provide massively enhanced levels of information and
understanding on many complex process operations.
In order for them to achieve widespread use as primary
design tools it is essential to achieve the same levels
of confidence that exist in traditional design methods
and approaches.

This paper has addressed the level and scope of
validation required for models, considering some
traditional modelling approaches as well as modern
computationally intensive models. In considering
kinetic and rheology models, the examples have
highlighted that when fitting models to experimental
data, confidence in the adjustable parameter values
is essential if that constituent model is to be reliable
when applied to a design. Reliance on residuals (least
squares) alone will not reliably parameterise or validate
a model.

In developing or fitting a model one should also
bear in mind the sagacious words of the physicist
and statistician George Box (84). Often recalled
only for the aphorism “All models are wrong; some
are useful”, the extended version reminds us that
we cannot always improve a model by the addition
of parameters and terms: “Since all models are

wrong the scientist cannot obtain a “correct” one
by excessive elaboration. On the contrary following
William of Occam he should seek an economical
description of natural phenomena. Just as the ability
to devise simple but evocative models is the signature
of the great scientist so over-elaboration and over-
parameterization is often the mark of mediocrity.”

In the specific context of this paper it is noted that
a finite set of experimental data can fit many different
models and often with many sets of adjustable
parameter values. Not all of these models will be useful
for design. A model derived from the real physics of the
system, where the parameters represent real quantities
which can potentially be measured, computed or
estimated independently from the data set, is much
more likely to be useful for design. Furthermore, in
accordance with Box’s observations above, the addition
of parameters with limited physical meaning to achieve
an enhancement of fit is not beneficial to the predictive
quality of the model or indeed to the estimation of the
true physical fitting parameters.

The above observations are even more important for
models of increased complexity, typified by discrete
particle and CFD models. Two examples of particle
flow modelling were presented, demonstrating that
although the respective models matched well the initial
data set more detailed consideration showed that other
facets or model outputs were very poorly predicted.
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Single-objective validation

is not enough. It is

necessary to evaluate the veracity of the underpinning
model components and closures. Detailed validation of
detailed models can be carried out using appropriate
data and at appropriate scales and this is to be
encouraged if the industry is to adopt successful
modelling approaches in future.

This paper is based on a Keynote Lecture given at the
9th European Congress in Chemical Engineering, Den
Haag, Netherlands, 21st—24th April 2013.
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