What’s the long- and short-term prognosis for palladium in organic synthesis, the key platinum group metal (pgm) for transition metal-based catalysis used today by the fine chemicals industries? Are these processes green and sustainable? Are they environmentally respectful of the metals, especially the pgms, so essential to modern day society? Are non-pgm ‘earth abundant’ metals an attractive alternative? Where does the up-and-coming area of chemoenzymatic catalysis, which combines chemo- and biocatalysis in one-pot processes in water, fit into the future of drug syntheses? And what about agricultural targets also being made that include palladium catalysis? These and related timely topics are discussed in this Perspective.
The palladium price has been rising because emissions legislation necessitates using more palladium in catalytic converters. However, this trend will not continue as the energy transition progresses, and in the future there will be considerably more palladium available to use in other applications, including chemicals, pharmaceuticals and agrochemicals catalysts. This is both opportunity and justification for the organic chemistry research community to develop new and significant uses for palladium that can be of global benefit. Any catalyst research needs to include optimisation of circular economy, offering sustainable process and recovery options to support life cycle assessment (LCA).