It is known that platinum-rhodium thermocouples exhibit mass loss when in the presence of oxygen at high temperatures due to the formation of volatile oxides of platinum and rhodium. The mass losses of platinum, Pt-6%Rh and Pt-30%Rh wires, commonly used for thermocouples, were considered in this paper to characterise the mass loss of wires of the three compositions due to formation and evaporation of the oxides PtO2 and RhO2 under the conditions that would be seen by thermocouples used at high temperature. For the tests, the wires were placed in thin alumina tubes to emulate the thermocouple format, and the measurements were performed in air at a temperature of 1324°C, i.e. with oxygen partial pressure of 21.3 kPa. It was found that the mass loss of the three wires increases linearly with elapsed time, consistent with other investigations, up to an elapsed time of about 150 h, but after that, a marked acceleration of the mass loss is observed. Remarkably, previous high precision studies have shown that a crossover after about 150 h at 1324°C is also observed in the thermoelectric drift of a wide range of platinum-rhodium thermocouples, and the current results are compared with those studies. The mass loss was greatest for Pt-30%Rh, followed by Pt6%Rh, then platinum.
We review developments in the study of the stability of platinum-iridium standard weights, in particular the kilogram prototypes manufactured from alloy supplied by Johnson Matthey in the 1880s that still stand at the heart of the International System of Units (abbreviated SI from the French: Système international d’unités). The SI has long since moved on from length standards based on physical artefacts fabricated from this alloy, but the SI unit of mass is still defined in this way, as the mass of a real physical object. The stability of these reference masses has been a concern since the 1930s, with mass loss or gain at the surface being the principal concern. In recent years X-ray photoelectron spectroscopy (XPS) has been particularly valuable in elucidating the types of contamination present and the mechanism by which contamination takes place. While direct studies on the International Prototype Kilogram are understandably difficult, at Newcastle University we have examined the surfaces of six Pt mass standards also manufactured in the mid-19th century, using XPS to identify contamination chemically. XPS shows a significant quantity of mercury on the surfaces of all six. The most likely source of Hg vapour is the accidental breakage of thermometers and barometers, and the mechanism of contamination may be similar to the poisoning of platinum group metal (pgm) catalysts by Hg, an effect known for almost a century.