1. Introduction The European Union (EU) has invested heavily in palladium membrane technology, as reflected by numerous multi-million Euro research projects funded over the last decades. As a result, many research groups in Europe, both from academia and research institutes, have been leading the development of Pd membrane technology targeting hydrogen production, carbon capture and other...
The International Symposium on Zeolite and Microporous Crystals 2015 (ZMPC2015) was held at the Sapporo Convention Center, Japan, from 28th June to 2nd July 2015 and had 435 attendees from 32 countries, with 75% from Japan, China, Korea or Taiwan. 396 presentations covered all aspects of zeolites and microporous crystals over four days. Catalysis and synthesis were the two main themes (46% of all presentations) with the others being: new porous materials; membranes and films; adsorption and diffusion; characterisation; novel applications; industrial applications; layered materials; computational chemistry; post-synthetic treatment; crystallography; and ion exchange. There were six plenary talks along with 17 keynote and 94 oral presentations that took place in three parallel sessions. There were two poster sessions for 250 posters and recent research reports.
Readers of this journal and its predecessor title, Platinum Metals Review, will be well aware of Johnson Matthey's long-standing expertise in platinum group metals (pgms) science and technology. The company has been active in this area for most of its long history, starting in 1817. Fast forward to the 21st century and many of Johnson Matthey's products and research and development (R&D)...
Oxidation technologies and advanced oxidation processes (AOPs) have been regarded as a competitive method for the remediation of persistent pollutants in water. Among AOPs, the use of photocatalysis has particularly attracted interest in recent decades. However, attempts to improve the efficiency of photocatalysts in terms of both enhanced activity and applicability under visible light have proved challenging. In this context, there is a need for processes able to achieve the synthesis of innovative nanostructured materials meeting these criteria with reproducibility and scalability in mind. The aim of this review is to focus on two themes of interest, namely noble metal based catalysts and spray pyrolysis (SP) processes. Several alternative SP methods have been reported and these will be described. The emphasis is placed on the recent use of SP for the synthesis of noble metal/semiconductor nanomaterials and their enhanced photocatalytic activity. Recent innovations in the design of SP processes and their potential to further improve noble metal-based photocatalysts are also examined. Finally, the possibility of using SP processes as a flexible tool to achieve immobilisation of photocatalysts onto substrates and in reactor for real water treatment application is considered.
1. Introduction 2015 may prove to be a pivotal point in managing the world’s climate following the United Nations Conference of Parties (COP21) in Paris (1). The gathering of nearly 200 countries to tackle climate change and their determination to limit global temperature rises to below 2ºC by the end of the century was highly significant. However, to meet these ambitious aims requires...
Palladium impregnated activated carbon (Pd/C) filters play a major role in air quality management by the removal of toxic carbon monoxide from confined environments. However, Pd is an expensive metal and therefore, recovery and reuse of Pd from spent filter cartridges is highly desirable. The objective of the present study was to biosynthesise Pd nanoparticles (NPs) using green tea as a reducing agent. The source of Pd for the NP synthesis was spent Pd/C. Three different acid based Pd extraction protocols constituting of hydrochloric acid-hydrogen peroxide (HCl-H2O2), 2 M HCl and aqua regia were systematically explored. The Pd impregnated carbon was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), ultraviolet-visible (UV-vis) spectroscopy, X-ray powder diffraction (XRD) and atomic absorption spectrometry (AAS) before and after Pd extraction. It was found that the aqua regia based extraction protocol was the most efficient among the three chosen acid or acid mixtures with an average absolute yield of 96%. Finally, an attempt was made towards one pot biosynthesis of Pd NPs from the recovered extract by using green tea as a reducing agent. The synthesised NPs were characterised using UV-vis spectroscopy, SEM and XRD.
We herein report on the effect of gamma ray radiation on platinum, osmium, rhodium and palladium salt solutions for synthesis of nanoparticles. Pt, Os, Rh and Pd salt solutions were exposed to intense gamma ray irradiation with doses varying from 70 to 120 kGy. The metal ion salt solutions were easily converted into metal nanoparticles using this radiolysis method. The radiolytic conversion effect produced metal nanoparticles suspended in solution. For Pt, Pd and Rh a metal coating on the edges of the polypropylene tube used as a container was unexpectedly observed but not for the Os solution. X-Ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses confirmed that both the coating and the metal nanoparticles correspond to the pure metal coming from the reduction of the initial salt. Quantitative analysis of the XRD patterns shows information about the size and stress of the converted metals. The production of a metal coating on polypropylene plastic tubes by gamma ray irradiation presents an interesting alternative to conventional techniques of metal deposition especially for coating the inner part of a tube.
The high conductivity of silver and its oxidation resistance make it the metal of choice for automotive applications in defogging and other areas. There is scope to reduce the cost by reducing the content of silver, a costly metal. This article reports the results from testing formulations with reduced silver content. A range of silver-coated and base metal fillers were tested however none of these resulted in performance to match the commercially available silver automotive pastes.
Introduction “Mesoporous Zeolites” is a comprehensive book published by Wiley in 2015. The book describes mesoporous materials, their synthesis, characterisation and applications. In addition to mesoporous materials, several chapters of the book review nanoporous materials. The book was edited by Professor Javier Garcia-Martinez of Universidad de Alicante, Spain, and Kunhao Li, Project...
The majority of books and reviews on any area of technology development tend to focus on information published in the journal literature; reviews of the patent literature are more often confined to the prior art sections of patent documents. However, patents remain one of the best sources of detailed technical information, particularly where the invention may have commercial significance,...
Batteries are present in all areas of life, from electronic devices to electric cars, fork lift trucks and more. But there is a lack of awareness that runs even to the highest levels of the complexities in the battery industry: the chemistries; the applications; the cell sizes; the risks; the legislation. As uptake of batteries grows across many applications there will inevitably be growth...
Introduction “The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications” aims to provide a complete reference book to researchers within the metal-organic frameworks (MOFs) field, covering a range of topics including topology networks, applications and characterisation techniques. MOFs are materials which contain metal ion centres and organic bridging ligands...
Introduction The International Workshop on Plasmas for Energy and Environmental Applications (IWPEEA) was held in Liverpool, UK, between 21st–24th August 2016. The event was organised by the Technological Plasmas Research Group at the University of Liverpool, UK. It included five plenary lectures, four invited lectures, 36 oral and 42 poster presentations. The workshop brought together...
Introduction “Surgical Tools and Medical Devices” 2nd Edition provides a comprehensive overview containing 23 chapters written by experts in each field. The chapters are not grouped together according to specific topics, but rather each chapter covers a range of aspects of surgical tools, medical device manufacturing and characterisation, surface engineering and interactions between...
“Metal-Organic Frameworks: A New Class of Crystalline Porous Materials” published by Lambert Academic Publishing, 2014, is a book written by Dr Behnam Seyyedi on the emerging porous materials of metal-organic frameworks (MOFs). The term MOF was coined by Omar Yaghi in 1995 (1). MOFs consist of both organic and inorganic building entities, where the organic ligands, i.e. spacers, are coordinated to the metal ion clusters, i.e. nodes, to create extended frameworks. In some cases, the frameworks are rigid enough to form internal voids after solvent removal, forming structures with high porosity and surface areas (up to ~ 7000 m2 g–1). MOFs have shown potential applications in a wide range of fields, such as gas separation and storage, catalysis, sensing and drug delivery.
Stress whitening is a long-standing problem and scientific work has focused on evaluating causes of this in bulk polymer systems. In this paper we focus on this optical defect exhibited by a complex thermosetting polyester melamine coating system used extensively in the pre-coated metal industry. There are several mechanisms proposed for how stress whitening occurs and hence there is uncertainty over the causes in the systems mentioned. The most likely explanation given to date is that a number of proposed micro-mechanisms exist, which one is occurring is entirely dependent on the system being investigated. The work presented shows that the presence of dissimilar particles is the cause of the stress whitening. The proposed mechanism for whitening and its disappearance in this case is a time and temperature dependent change in density, i.e. cracking or voiding, where the cracks are outside the range that scatters light with an increase in temperature.
Johnson Matthey has a long history and track record of designing and supplying specialist coatings into a wide range of application areas and substrate types. A common theme is the requirement to deposit precise amounts of materials. This is key for expensive platinum group metals and for the resulting coating to provide a function such as catalytic, conductive, protective or optical....
The accurate and precise characterisation of disordered, mesoporous solids continues to be an ongoing challenge due to the high level of complexity of such materials. Common, indirect methods, such as gas sorption and mercury porosimetry, still offer relatively cheap, and, most importantly, statistically representative characterisations of macroscopic samples. This work reviews and expands upon recent developments aimed at increasing, and cross-validating, the information obtained from such methods. This involves developing a better understanding of the pore-pore co-operative effects that emerge only in extensive, disordered pore networks to better interpret raw characterisation data, and to use these effects to deliver more information on the void space. This work also describes novel hybrid methods that also greatly increase the information that indirect methods can deliver on complex mesoporous solids.
“Particle-Stabilized Emulsions and Colloids: Formation and Applications”, edited by To Ngai and Stefan A. F. Bon, is the third book of the Royal Society of Chemistry (RSC) Soft Matter Series, published in 2015. Both editors have extensive expertise in polymer chemistry and its application to colloid science. Professor Ngai's research interests focus on interparticle interactions at fluid...
Professor Binks’ research is primarily concerned with materials chemistry. He is a physical chemist with research interests in surfactants, foams, emulsions and colloidal particles at interfaces. His work looks at the fundamental science that underpins the behaviour of formulations. As such, it has implications for industry applications in areas as diverse as food, cosmetics, oil and gas,...