Introduction “Mesoporous Zeolites” is a comprehensive book published by Wiley in 2015. The book describes mesoporous materials, their synthesis, characterisation and applications. In addition to mesoporous materials, several chapters of the book review nanoporous materials. The book was edited by Professor Javier Garcia-Martinez of Universidad de Alicante, Spain, and Kunhao Li, Project...
The majority of books and reviews on any area of technology development tend to focus on information published in the journal literature; reviews of the patent literature are more often confined to the prior art sections of patent documents. However, patents remain one of the best sources of detailed technical information, particularly where the invention may have commercial significance,...
Oxidation technologies and advanced oxidation processes (AOPs) have been regarded as a competitive method for the remediation of persistent pollutants in water. Among AOPs, the use of photocatalysis has particularly attracted interest in recent decades. However, attempts to improve the efficiency of photocatalysts in terms of both enhanced activity and applicability under visible light have proved challenging. In this context, there is a need for processes able to achieve the synthesis of innovative nanostructured materials meeting these criteria with reproducibility and scalability in mind. The aim of this review is to focus on two themes of interest, namely noble metal based catalysts and spray pyrolysis (SP) processes. Several alternative SP methods have been reported and these will be described. The emphasis is placed on the recent use of SP for the synthesis of noble metal/semiconductor nanomaterials and their enhanced photocatalytic activity. Recent innovations in the design of SP processes and their potential to further improve noble metal-based photocatalysts are also examined. Finally, the possibility of using SP processes as a flexible tool to achieve immobilisation of photocatalysts onto substrates and in reactor for real water treatment application is considered.
The International Symposium on Zeolite and Microporous Crystals 2015 (ZMPC2015) was held at the Sapporo Convention Center, Japan, from 28th June to 2nd July 2015 and had 435 attendees from 32 countries, with 75% from Japan, China, Korea or Taiwan. 396 presentations covered all aspects of zeolites and microporous crystals over four days. Catalysis and synthesis were the two main themes (46% of all presentations) with the others being: new porous materials; membranes and films; adsorption and diffusion; characterisation; novel applications; industrial applications; layered materials; computational chemistry; post-synthetic treatment; crystallography; and ion exchange. There were six plenary talks along with 17 keynote and 94 oral presentations that took place in three parallel sessions. There were two poster sessions for 250 posters and recent research reports.
1. Introduction The European Union (EU) has invested heavily in palladium membrane technology, as reflected by numerous multi-million Euro research projects funded over the last decades. As a result, many research groups in Europe, both from academia and research institutes, have been leading the development of Pd membrane technology targeting hydrogen production, carbon capture and other...
1. Introduction 2015 may prove to be a pivotal point in managing the world’s climate following the United Nations Conference of Parties (COP21) in Paris (1). The gathering of nearly 200 countries to tackle climate change and their determination to limit global temperature rises to below 2ºC by the end of the century was highly significant. However, to meet these ambitious aims requires...
Materials chemistry is concerned with establishing connections between structure, properties, processability and performance of molecular materials, including organic compounds and polymers, supramolecular architectures and nanoporous substances. Encompassed within this diverse field are molecular magnets, graphene, optoelectronic devices, artificial photosynthesis, chemical sensors, speciality polymers, fluorescent labels, functional membranes, composite conjugated hybrids and molecular sieves. The field relies heavily on sophisticated organic synthesis but readily embraces computational chemistry in order to delve more deeply into the properties of the materials. The topic provides an important interface between atomic, molecular and supramolecular behaviour and the functions of the substance under examination. All manner of molecular materials are considered, ranging from thin films to organogels to solids with microscopic cavities. The 12th International Conference on Materials Chemistry was held between 20th–23rd July 2015 at the University of York, UK, and covered the full range of topics, with six plenary lectures supported by twenty-four keynote lectures and over a hundred invited or contributed talks (1). In addition, some 370 posters were presented. The conference was co-chaired by Duncan Bruce (University of York) and Dermot O'Hare (University of Oxford, UK).
Palladium impregnated activated carbon (Pd/C) filters play a major role in air quality management by the removal of toxic carbon monoxide from confined environments. However, Pd is an expensive metal and therefore, recovery and reuse of Pd from spent filter cartridges is highly desirable. The objective of the present study was to biosynthesise Pd nanoparticles (NPs) using green tea as a reducing agent. The source of Pd for the NP synthesis was spent Pd/C. Three different acid based Pd extraction protocols constituting of hydrochloric acid-hydrogen peroxide (HCl-H2O2), 2 M HCl and aqua regia were systematically explored. The Pd impregnated carbon was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), ultraviolet-visible (UV-vis) spectroscopy, X-ray powder diffraction (XRD) and atomic absorption spectrometry (AAS) before and after Pd extraction. It was found that the aqua regia based extraction protocol was the most efficient among the three chosen acid or acid mixtures with an average absolute yield of 96%. Finally, an attempt was made towards one pot biosynthesis of Pd NPs from the recovered extract by using green tea as a reducing agent. The synthesised NPs were characterised using UV-vis spectroscopy, SEM and XRD.
Introduction “Hierarchical Nanostructures for Energy Devices” is part of the Royal Society of Chemistry Nanoscience & Nanotechnology Series. The editors Seung Hwan Ko and Costas P. Grigoropoulos have published more than 60 articles together with a strong focus on laser processing of nanomaterials and hierarchical surface coatings. This book highlights the advantages of hierarchical...
Introduction “Surgical Tools and Medical Devices” 2nd Edition provides a comprehensive overview containing 23 chapters written by experts in each field. The chapters are not grouped together according to specific topics, but rather each chapter covers a range of aspects of surgical tools, medical device manufacturing and characterisation, surface engineering and interactions between...
Introduction The International Workshop on Plasmas for Energy and Environmental Applications (IWPEEA) was held in Liverpool, UK, between 21st–24th August 2016. The event was organised by the Technological Plasmas Research Group at the University of Liverpool, UK. It included five plenary lectures, four invited lectures, 36 oral and 42 poster presentations. The workshop brought together...
Batteries are present in all areas of life, from electronic devices to electric cars, fork lift trucks and more. But there is a lack of awareness that runs even to the highest levels of the complexities in the battery industry: the chemistries; the applications; the cell sizes; the risks; the legislation. As uptake of batteries grows across many applications there will inevitably be growth...
Introduction “The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications” aims to provide a complete reference book to researchers within the metal-organic frameworks (MOFs) field, covering a range of topics including topology networks, applications and characterisation techniques. MOFs are materials which contain metal ion centres and organic bridging ligands...
Aqueous suspensions of multi-walled carbon nanotubes (MWCNTs + deionised water) have been synthesised. Carbon nanotubes (CNTs) were derived by chemical vapour deposition (CVD). Transmission electron microscopy (TEM) measurements show the formation of MWCNTs. Three samples of CNT-based aqueous nanofluids having MWCNT concentrations of 0.01 vol%, 0.03 vol% and 0.05 vol% were prepared with the help of ultrasonic irradiation. A very small amount of sodium dodecyl sulfate (SDS) was used as a surfactant to minimise the agglomeration of the MWCNTs. An effective enhancement in thermal conductivity was observed at different temperatures. The obtained results are explained with percolation theory.
The high conductivity of silver and its oxidation resistance make it the metal of choice for automotive applications in defogging and other areas. There is scope to reduce the cost by reducing the content of silver, a costly metal. This article reports the results from testing formulations with reduced silver content. A range of silver-coated and base metal fillers were tested however none of these resulted in performance to match the commercially available silver automotive pastes.
Introduction Faraday Discussions are unique international meetings that focus on miscellaneous areas of chemistry and have been held for over 100 years. The format of these meetings is distinctive because delegates submit their papers in advance and these are distributed to all the participants prior to the meeting. During the meeting, the presenting authors are given five minutes to...
We herein report on the effect of gamma ray radiation on platinum, osmium, rhodium and palladium salt solutions for synthesis of nanoparticles. Pt, Os, Rh and Pd salt solutions were exposed to intense gamma ray irradiation with doses varying from 70 to 120 kGy. The metal ion salt solutions were easily converted into metal nanoparticles using this radiolysis method. The radiolytic conversion effect produced metal nanoparticles suspended in solution. For Pt, Pd and Rh a metal coating on the edges of the polypropylene tube used as a container was unexpectedly observed but not for the Os solution. X-Ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses confirmed that both the coating and the metal nanoparticles correspond to the pure metal coming from the reduction of the initial salt. Quantitative analysis of the XRD patterns shows information about the size and stress of the converted metals. The production of a metal coating on polypropylene plastic tubes by gamma ray irradiation presents an interesting alternative to conventional techniques of metal deposition especially for coating the inner part of a tube.
Readers of this journal and its predecessor title, Platinum Metals Review, will be well aware of Johnson Matthey's long-standing expertise in platinum group metals (pgms) science and technology. The company has been active in this area for most of its long history, starting in 1817. Fast forward to the 21st century and many of Johnson Matthey's products and research and development (R&D)...
Introduction American Chemical Society National Meetings and Expositions are held twice a year in spring and autumn and constitute the largest gathering of chemical scientists at any point in the conference calendar. This year the 247th meeting (1) was held from 16th–20th March 2014, hosted at the Dallas Convention Centre, Texas, USA. The overarching theme of the conference was Chemistry...
Stress whitening is a long-standing problem and scientific work has focused on evaluating causes of this in bulk polymer systems. In this paper we focus on this optical defect exhibited by a complex thermosetting polyester melamine coating system used extensively in the pre-coated metal industry. There are several mechanisms proposed for how stress whitening occurs and hence there is uncertainty over the causes in the systems mentioned. The most likely explanation given to date is that a number of proposed micro-mechanisms exist, which one is occurring is entirely dependent on the system being investigated. The work presented shows that the presence of dissimilar particles is the cause of the stress whitening. The proposed mechanism for whitening and its disappearance in this case is a time and temperature dependent change in density, i.e. cracking or voiding, where the cracks are outside the range that scatters light with an increase in temperature.