The principal possibility of processing the industrial poor collective concentrates of platinum group metals (pgms) using a hydrocarbonyl technology with the selective concentration of pgms from poor multicomponent chloride and chloride-sulfate solutions with the subsequent production of pure pgms is shown.
For the metals used in jewellery, high hardness and the associated scratch resistance are much sought after. Conventional crystalline alloys for jewellery are alloyed and extensively processed (thermally and mechanically) to improve hardness, but it is difficult to reach values beyond 300 HV. The advent of bulk metallic glasses (BMGs), based on precious metals and with hardness exceeding 300 HV in the as-cast state, is therefore of great interest for both jewellery and watchmaking. The non-crystalline structure of these materials not only gives high hardness, but also the opportunity to shape metals like plastics, via thermoplastic forming (TPF). For more traditional jewellery manufacture, BMGs also exhibit high-definition and near-net-shape casting. Gold-based alloys have long dominated the consideration of BMGs for jewellery as they can comply with 18 karat hallmarks. Although BMGs based on platinum or palladium possess excellent thermoplastic formability and are without known tarnishing problems, achieving useful glass-forming ability (GFA) within the more restrictive hallmarking standards typically used for jewellery (≥95 wt% platinum or palladium) is at best challenging. In this two-part review, platinum- and palladium-based BMGs are discussed, focusing on their potential application in jewellery and on the further research that is necessary.
Introduction Platinum group metals (pgms) have widespread applications as functional materials in many different industries. The applications range from catalytic surfaces or particles, sensors, biomedical imaging or drug delivery systems and thermocouples up to jewellery items that we use for special moments of our life. The pgms are used as solid bulk materials, powders, thin films,...
It is known that platinum-rhodium thermocouples exhibit mass loss when in the presence of oxygen at high temperatures due to the formation of volatile oxides of platinum and rhodium. The mass losses of platinum, Pt-6%Rh and Pt-30%Rh wires, commonly used for thermocouples, were considered in this paper to characterise the mass loss of wires of the three compositions due to formation and evaporation of the oxides PtO2 and RhO2 under the conditions that would be seen by thermocouples used at high temperature. For the tests, the wires were placed in thin alumina tubes to emulate the thermocouple format, and the measurements were performed in air at a temperature of 1324°C, i.e. with oxygen partial pressure of 21.3 kPa. It was found that the mass loss of the three wires increases linearly with elapsed time, consistent with other investigations, up to an elapsed time of about 150 h, but after that, a marked acceleration of the mass loss is observed. Remarkably, previous high precision studies have shown that a crossover after about 150 h at 1324°C is also observed in the thermoelectric drift of a wide range of platinum-rhodium thermocouples, and the current results are compared with those studies. The mass loss was greatest for Pt-30%Rh, followed by Pt6%Rh, then platinum.
Ruthenium tablets with mean grain size of ~4–5 μm were prepared by vacuum hot pressing (VHP), and tablets with maximum density of 12.2 g cm–3 were obtained with sintering time of 2 h. X-ray diffraction (XRD) revealed that there was a texture change with sintering time. The microstructure of the ruthenium tablets was observed by electron backscatter diffraction (EBSD) and field emission scanning electron microscopy (FSEM). The microstructure evolution of ruthenium with sintering time is discussed.
Platinum-based alloys are being developed for high-temperature applications with the aim of replacing some of the currently used nickel-based superalloys (NBSAs) and benchmark alloy, PM2000. The platinum-based superalloys have a similar structure to the NBSAs and can potentially be used at higher temperatures and in more aggressive environments because platinum is more chemically inert and has a higher melting point. In this paper, the recent progress in research and development of platinum-based superalloys is overviewed. Firstly, the composition optimisation and structural design of platinum-base superalloys are introduced. The structural characteristics, mechanical properties, oxidation resistance and corrosion behaviour of platinum-aluminium ternary, quaternary and multiple superalloys are summarised. Finally, directions for further research and application of platinum-based superalloys are analysed and prospected.
Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.
This paper provides a database of mechanical properties for most of the commercially available platinum alloys currently in use for jewellery purposes. The alloys were tested for mechanical properties through tensile and microhardness testing in the as-cast and hot isostatically pressed conditions. Microstructural characterisations were performed using scanning electron microscopy (SEM).
A novel process for the recovery of platinum group metals (pgms) from ternary alloys using a hydrocarbonyl process is proposed. The hydrocarbonyl process involves treatment of a chloride solution of the pgms with carbon monoxide at ambient pressure. The results demonstrate that the process can provide high purity pgms from a ternary platinum-rhodium-palladium alloy such as that obtained from palladium-nickel catchment alloys used with platinum-rhodium gauzes during high temperature ammonia oxidation.
BIORECOVER brings together diverse expertise with the goal of developing a new sustainable and safe process, essentially based on biotechnology, for selective extraction of critical raw materials (CRMs), rare earth elements (REE), magnesium and platinum group metals (pgms). The four-year European Union (EU) H2020 project involves 14 international partners from mining, microbiology, chemistry, engineering, metallurgy, sustainable process development, as well as CRM end-users. Starting from relevant unexploited secondary and primary sources of CRMs, BIORECOVER will develop and integrate three stages for CRM extraction: (a) removal of major impurities present in raw materials; (b) mobilisation of CRMs through use of microorganisms; and (c) development of specific technologies for recovering metals with high selectivity and purity that meet the quality requirements for reuse. Downstream processes will be developed and recovered metals will be assessed by end-users. Modelling and integration of the modular stages and economic and environmental assessment will be done to develop the most effective and sustainable process. This short feature describes the aims and approach, project technologies and intended outputs of the BIORECOVER project.
Titanium-platinum (Ti50Pt50) (all compositions in at%) alloy exhibits thermoelastic martensitic phase transformation above 1000°C and has potential for high-temperature shape memory material applications. However, as has been previously reported, Ti50Pt50 alloy exhibited a negligible recovery ratio (0–11%) and low strength in martensite and especially in the austenite phase due to low critical stress for slip deformation. In order to improve the high-temperature strength and shape memory properties, the effects of partial substitution of Ti with other Group 4 elements such as zirconium and hafnium and the effect of partial substitution of Pt with other platinum group metals (pgms) such as iridium and ruthenium on the high-temperature mechanical and shape memory properties of Ti50Pt50 alloy were recently investigated. This paper reviews the transformation temperatures and high-temperature mechanical and shape memory properties of recently developed Ti site substituted (Ti,Zr)50Pt50, (Ti,Hf)50Pt50 and Pt site substituted Ti50(Pt,Ru)50 and Ti50(Pt,Ir)50 alloys for high-temperature (~800°C–1100°C) material applications.
Having established that osmium is the densest metal at room temperature the question arises as to whether it is always the densest metal. It is shown here that at ambient pressure osmium is the densest metal at all temperatures, although there is an ambiguity below 150 K. At room temperature iridium becomes the densest metal above a pressure of 2.98 GPa, at which point the densities of the two metals are equal at 22,750 kg m–3.
This review briefly describes the vacuum electrostatic levitation furnace developed by JAXA and the associated non-contact techniques used to measure the density, the surface tension and the viscosity of materials. The paper then presents a summary of the data taken with this facility in the equilibrium liquid and non-equilibrium liquid phases for the six platinum group metals (pgms): platinum, palladium, rhodium, iridium, ruthenium and osmium over wide temperature ranges that include undercooled and superheated phases. The presented data (density, surface tension and viscosity of Pt, Rh, Ir, Ru and Os and density of Pd) are compared with literature values.
Electrical resistivity values for both the solid and liquid phases of the platinum group metals (pgms) palladium and platinum are evaluated. In particular improved values are obtained for the liquid phases of these metals. Previous reviews on electrical resistivity which included evaluations for the pgms included those of Meaden (1), Bass (2), Savitskii et al. (3) and Binkele and Brunen (4) as well as individual reviews by Matula (5) on palladium and White (6) on platinum.
Iridium as a barrier coating is an important area of high-temperature application. In Part I, the introduction was presented and the different deposition processes were reviewed (1). This paper, Part II, describes the texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment are also investigated in some detail.
In the century since the first platinum gauze for nitric acid production was made by Johnson Matthey, the demand for nitric acid has increased considerably with its vast number of applications: from fertiliser production to mining explosives and gold extraction. Throughout the significant changes in the industry over the past 100 years, there has been continual development in Johnson Matthey’s gauze technology to meet the changing needs of customers: improving efficiency, increasing campaign length, reducing metal losses and reducing harmful nitrous oxide emissions. This article reviews the progress in gauze development over the past century and looks at recent developments.
The thermodynamic properties were reviewed by the author in 1995. A new assessment of the enthalpy of fusion has led to a revision of the thermodynamic properties of the liquid phase and although the enthalpy of sublimation at 298.15 K is retained as 377 ± 4 kJ mol–1 the normal boiling point is revised to 3272 K at one atmosphere pressure.
The properties and glass-forming ability (GFA) of platinum- and palladium-based bulk metallic glasses (BMGs) for jewellery were introduced in Part I of this two-part review (1). Here, we will describe methods for their processing, tarnishing and corrosion resistance and consider their prospects and future developments.
Anisotropic and average intrinsic electrical resistivity measurements of ruthenium were evaluated from 10 K to 1600 K and average values above this temperature up to the melting point. For osmium average values were evaluated from 30 K to 273.15 K and anisotropic and average values above this temperature and up to 1600 K.
Barring the presence of significant amounts of impurities, an important cause of thermoelectric inhomogeneity and therefore calibration drift of platinum-rhodium thermocouples at high temperatures is the vaporisation and transport of the oxides of Pt and Rh, which causes local changes in wire composition. By examining the vapour pressures of Pt and Rh oxides and their temperature dependence, it is shown that at a given temperature there is an optimal wire composition at which evaporation of the oxides has no effect on the wire composition, provided the vapour does not leave the vicinity of the wire. This may also have applications for Pt-Rh heater elements.