Introduction American Chemical Society National Meetings and Expositions are held twice a year in spring and autumn and constitute the largest gathering of chemical scientists at any point in the conference calendar. This year the 247th meeting (1) was held from 16th–20th March 2014, hosted at the Dallas Convention Centre, Texas, USA. The overarching theme of the conference was Chemistry...
1. Introduction The Carbon Dioxide Utilisation Summits are held twice per year, alternating between being hosted in a European location and in North America. They are organised by Active Communications International (ACI), Inc. This two-day event was held in Reykjavik, Iceland, on 18th and 19th October 2017. The main aim of this Summit series is to bring together key players from industry,...
Introduction “Solid-State NMR in Zeolite Catalysis” was written by four professors from the Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, who have tremendous expertise in the fields of solid-state nuclear magnetic resonance (solid-state NMR) and heterogeneous catalysis. This book is Volume 103 in the series ‘Lecture Notes in Chemistry’ published by Springer. It...
Industrial processes contribute significantly to global carbon dioxide emissions, with iron and steel manufacturing alone responsible for 6% of the total figure. The STEPWISE project, funded through the European Horizon 2020 (H2020) Low Carbon Energy (LCE) programme under grant agreement number 640769, is looking at reducing CO2 emissions in the iron and steel making industries. At the heart of this project is the ECN technology called sorption-enhanced water-gas shift (SEWGS), which is a solid sorption technology for CO2 capture from fuel gases such as blast furnace gas (BFG). This technology combines water-gas shift (WGS) in the WGS section with CO2/H2 separation steps in the SEWGS section. Scaling up of the SEWGS technology for CO2 capture from BFG and demonstrating it in an industrially relevant environment are the key objectives of the STEPWISE project, which are achieved by international collaboration between the project partners towards design, construction and operation of a pilot plant at Swerea Mefos, Luleå, Sweden, next to the SSAB steel manufacturing site.
Before joining Johnson Matthey, Tuğçe Eralp Erden was a Marie Curie PhD student at the University of Reading, UK, studying model chiral adsorption systems using synchrotron-based structural and spectroscopic techniques (1–5). After completing her PhD, she joined the advanced characterisation department at Johnson Matthey, Sonning Common, UK, where she is currently leading the surface...
1. Introduction There are few mathematical breakthroughs that have had as dramatic impact on the scientific process as the Fourier transform. Defined in 1807 in a paper by Jean Baptiste Joseph Fourier (1) to solve a problem in heat conduction, the integral transform, Equation (i): (i) and its inverse, Equation (ii): (ii) provide the framework to determine the spectral make up of a time...
Introduction In recent years, whenever the subject of digitalisation or digital transformation is brought up for discussion, we normally observe two distinguishing reactions from the attendees: one group is excited and satisfied, the other, interested and worried. Of course, some have a good mixture of both. The former has been from companies, big or small, which have a clear...
The aim of this book “Ball Milling towards Green Synthesis” is to highlight the importance of ball milling as a potential route to produce organic materials. The book was published by the Royal Society of Chemistry and edited by Brindaban Ranu and Achim Stolle. In this book, applications, projects, advantages and challenges related to ball milling for specific organic syntheses are...
BIORECOVER brings together diverse expertise with the goal of developing a new sustainable and safe process, essentially based on biotechnology, for selective extraction of critical raw materials (CRMs), rare earth elements (REE), magnesium and platinum group metals (pgms). The four-year European Union (EU) H2020 project involves 14 international partners from mining, microbiology, chemistry, engineering, metallurgy, sustainable process development, as well as CRM end-users. Starting from relevant unexploited secondary and primary sources of CRMs, BIORECOVER will develop and integrate three stages for CRM extraction: (a) removal of major impurities present in raw materials; (b) mobilisation of CRMs through use of microorganisms; and (c) development of specific technologies for recovering metals with high selectivity and purity that meet the quality requirements for reuse. Downstream processes will be developed and recovered metals will be assessed by end-users. Modelling and integration of the modular stages and economic and environmental assessment will be done to develop the most effective and sustainable process. This short feature describes the aims and approach, project technologies and intended outputs of the BIORECOVER project.
Introduction “Advances in Biofuel Production: Algae and Aquatic Plants” is a compilation of papers that have previously been published elsewhere, presented as 12 chapters. These have been edited by Barnabas Gikonyo, whose research interests range from the application of biocompatible polymeric materials for the repair of spinal cord injuries to the development of non-food biofuels. The...
Johnson Matthey has a long history and track record of designing and supplying specialist coatings into a wide range of application areas and substrate types. A common theme is the requirement to deposit precise amounts of materials. This is key for expensive platinum group metals and for the resulting coating to provide a function such as catalytic, conductive, protective or optical....
This symposium held in Bad Harrenalb, Germany, from 3rd–5th September, 2017, specifically focused on modelling and numerical simulation in automobile exhaust-gas aftertreatment. The purpose of the workshop was to support the exchange of state-of-the-art modelling and simulation techniques and new approaches among researchers, scientists and engineers from industry and academia. The meeting had over 100 registered participants, about 45% from academia and 55% from industry. The scientific programme was composed of four tutorials, plus oral and poster presentations.
This report gives a summary of the oral presentations, which will be divided into five sessions: selective catalytic reduction (SCR), methane oxidation, diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and modelling and performance.
Introduction The International Workshop on Plasmas for Energy and Environmental Applications (IWPEEA) was held in Liverpool, UK, between 21st–24th August 2016. The event was organised by the Technological Plasmas Research Group at the University of Liverpool, UK. It included five plenary lectures, four invited lectures, 36 oral and 42 poster presentations. The workshop brought together...
Batteries are present in all areas of life, from electronic devices to electric cars, fork lift trucks and more. But there is a lack of awareness that runs even to the highest levels of the complexities in the battery industry: the chemistries; the applications; the cell sizes; the risks; the legislation. As uptake of batteries grows across many applications there will inevitably be growth...
In the century since the first platinum gauze for nitric acid production was made by Johnson Matthey, the demand for nitric acid has increased considerably with its vast number of applications: from fertiliser production to mining explosives and gold extraction. Throughout the significant changes in the industry over the past 100 years, there has been continual development in Johnson Matthey’s gauze technology to meet the changing needs of customers: improving efficiency, increasing campaign length, reducing metal losses and reducing harmful nitrous oxide emissions. This article reviews the progress in gauze development over the past century and looks at recent developments.
Global methanol production in 2016 was around 85 million metric tonnes (1), enough to fill an Olympic-sized swimming pool every twelve minutes. And if all the global production capacity were in full use, it would only take eight minutes. The vast majority of the produced methanol undergoes at least one further chemical transformation, more likely two or three before being turned into a final product. Methanol is one of the first building blocks in a wide variety of synthetic materials that make up many modern products and is also used as a fuel and a fuel additive. This paper looks at the last 100 years or so of the industrial history of methanol production.
This themed issue focuses on ‘Sustainable Industry’ from the perspective of research advances and technological solutions. Starting with a high level policy context, it is clear that the roles and responsibilities of industry are broader than technology and go way beyond what happens within industry. People have been thinking about the issues and options encompassed in the word...
Introduction The Royal Society of Chemistry Faraday Discussions are a series of meetings focusing on rapidly developing areas of physical chemistry. Contrary to typical conferences, Faraday Discussions rely on the active participation of speakers and audience alike. Topics for each session are based on new research papers submitted specifically for the meeting. Audience participation is...
Introduction “Green Catalysts for Energy Transformation and Emission Control” is book 1184 in the ACS Symposium Series, which has been published since 1974 and is peer-reviewed, consisting of original research papers and review articles. The purpose of the series is to publish comprehensive books based on current scientific research presented at ACS sponsored symposia. The content of this...
1. Introduction The European Union (EU) has invested heavily in palladium membrane technology, as reflected by numerous multi-million Euro research projects funded over the last decades. As a result, many research groups in Europe, both from academia and research institutes, have been leading the development of Pd membrane technology targeting hydrogen production, carbon capture and other...