The RSC Catalysis Series book: “Heterocycles from Double-Functionalized Arenes: Transition Metal Catalysts” by Xiao-Feng Wu and Matthias Beller consists of four chapters covering about 300 pages. The Synthesis of Heterocycles Heterocycles are always an interesting class of compounds due to their immense number of applications in pharmaceuticals, agrochemicals and fine chemicals. Unlike the...
Published more than ten years after the first edition of “Handbook of Metathesis” (1) which enjoyed tremendous success, the new edition is a milestone in the development of metathesis chemistry. The three volumes are edited by the Nobel laureate Professor Robert H. Grubbs (California Institute of Technology, USA) in collaboration with an impressive panel of co-editors, all famous experts...
Introduction As humans, we seem to desire structure, relationships and laws to understand the universe. Through increased understanding, we can solve the problems and challenges that we perceive. This method and the output are given the label of science. At its best, science provides exquisite understanding, life-changing solutions or sometimes both. The downside of the structures and...
The formulation and delivery of the biologically active ingredients (AIs) (for example, agrochemicals and active pharmaceutical ingredients (APIs)) is an inherently interdisciplinary area of research and development. In this short review we discuss the evolution of AI and API delivery systems towards smart stimuli-responsive formulations with precisely controlled delivery for specific applications. We also highlight a few examples of such systems using AIs from Johnson Matthey’s controlled substance and API portfolio.
Saif A. Khan is an Associate Professor in the Department of Chemical and Biomolecular Engineering at the National University of Singapore (NUS). He is a chemical engineer by training and his research spans the areas of chemical reaction engineering, microfluidics, micro- and mesoscale flow reactors and their applications in chemistry and materials science. His research group at NUS...
The need to avoid health issues and pollution of the environment from the use of chemicals and synthetic materials inspires scientists to search for new biological compounds beneficial to human beings. Caves, being extreme environments, might be potential sources of these compounds. Actinobacteria, one of the main groups that colonise these environments, are known to generate natural bioactive compounds. To investigate the potential uses of Parsık Cave Actinobacteria, identification of this group of isolates and the investigation of their secreted biological compounds constituted the principal aim of the present study. The identification was achieved by sequencing 16S rRNA genes of 41 selected bacteria of which 28 species were identified as Actinobacteria. Microbacterium (21%) and Pseudarthrobacter (14%) were the most identified Actinobacteria genera. Antimicrobial effects of the isolates P1 and P16 were observed against standard microorganisms like Candida albicans. The gas chromatography-mass spectrometry (GC-MS) analysis of their broth showed compounds with known antimicrobial, antioxidant or anticancer properties as well as unknown compounds. Polyketide synthase (PKS) and non-ribosomal peptide synthases (NRPS) respectively were amplified in 32.1% and 53.5% of the identified Actinobacteria while 25% were found to have both NRPS and PKS amplified. Amylase, gelatinase, cellulase, deoxyribonuclease (DNase), urease and casein hydrolysing activities were observed in the identified Actinobacteria. These results show that Actinobacteria from Parsık Cave might be good sources of industrial and biotechnological compounds. Furthermore, discovery of new bioactive compounds from these bacteria is promising due to the many unknown compounds observed in the GC-MS analysis and the high percentage of NRPS and PKS gene amplification.
What’s the long- and short-term prognosis for palladium in organic synthesis, the key platinum group metal (pgm) for transition metal-based catalysis used today by the fine chemicals industries? Are these processes green and sustainable? Are they environmentally respectful of the metals, especially the pgms, so essential to modern day society? Are non-pgm ‘earth abundant’ metals an attractive alternative? Where does the up-and-coming area of chemoenzymatic catalysis, which combines chemo- and biocatalysis in one-pot processes in water, fit into the future of drug syntheses? And what about agricultural targets also being made that include palladium catalysis? These and related timely topics are discussed in this Perspective.
The palladium price has been rising because emissions legislation necessitates using more palladium in catalytic converters. However, this trend will not continue as the energy transition progresses, and in the future there will be considerably more palladium available to use in other applications, including chemicals, pharmaceuticals and agrochemicals catalysts. This is both opportunity and justification for the organic chemistry research community to develop new and significant uses for palladium that can be of global benefit. Any catalyst research needs to include optimisation of circular economy, offering sustainable process and recovery options to support life cycle assessment (LCA).
Introduction It is reasonable to say that there is a very natural connection between food and encapsulation, considering the fact that many traditional foods from different cuisines around the world bear unmistakable similarities to modern encapsulation products. For example, the traditional Chinese food tangyuan can be regarded as macro-capsules of flavoured fillings. It is therefore no...