Lithium Sulfur: Mechanism, Modelling and Materials (Li-SM3) was organised by Oxis Energy Ltd, UK, Imperial College London, UK, and the Joint Center for Energy Storage Research (JCESR), USA. It was held at the Institution of Engineering and Technology (IET), Savoy Place, London from 26th–27th April 2017. More than 150 researchers from around the world attended this event, 44 of them...
Introduction The Royal Society of Chemistry Faraday Discussions are a series of meetings focusing on rapidly developing areas of physical chemistry. Contrary to typical conferences, Faraday Discussions rely on the active participation of speakers and audience alike. Topics for each session are based on new research papers submitted specifically for the meeting. Audience participation is...
Introduction The third UK Energy Storage Conference (UKES2016) was held at the Edgbaston campus of the University of Birmingham, UK, from midday on Wednesday 30th November to midday on Friday 2nd December 2016. The aim of the conference, organised by the Energy Storage Research Network on behalf of the UK Research Council funded Energy SuperStore Hub and chaired by Professor Nigel Brandon...
Rechargeable metal-oxygen cells could exceed the stored energy of today’s most advanced lithium-ion cells. However challenges exist that must be overcome to bring this technology into practical application. These challenges include, among others, the recharge and cyclability efficiency, materials development and improvements in fundamental understanding of the electrochemistry and chemistry inside the cell. The common challenges for the anode, including corrosion, passivation and dendrite formation and those for the air cathode and the electrolyte are summarised in this review for cells based on magnesium, calcium, aluminium, silicon, zinc and iron.
Introduction “Electrochemistry: Volume 14” is a collated book of five papers edited by Craig Banks (Manchester Metropolitan University, UK) and Steven McIntosh (Lehigh University, Bethlehem PA, USA), both of whom are well established in the field with research interests covering the topics in the book. The book is one of a series which aims to collate and summarise the key topics receiving...
Historically, Johnson Matthey has had a long association with electrochemistry, and perhaps this was inevitable because of the importance of the platinum group metals (pgm) to Johnson Matthey’s early development. Platinum, in particular, has been incredibly useful in the field, because of its exceptional electrocatalytic activity and impressive inertness in most environments. Famously,...
Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for H7PV4Mo8O40 and Na4H3PV4Mo8O40, two promising polyoxometalate (POM)-based catholytes. The results suggest 80°C and a catholyte concentration of 0.3 M provide the optimum performance for both H7PV4Mo8O40 and Na4H3PV4Mo8O40 (for ambient pressure operation).
Electrochemistry studies on the derivatives of graphene have been in the forefront of chemical research in recent years. The large specific surface area, high electrical conductivity, fast electron transfer rate and excellent biocompatibility to biomolecules constitute a few of the underlying reasons for the extensive application of graphene derivatives in modern electrochemistry and related technologies. Much interest in graphene derivatives has been driven by the ease of intentional functionalisation of the carbon backbone of graphene with dopants, such as nitrogen. Doping enhances the electrical conductivity and biocompatibility of nitrogen-doped graphene (NGr) nanomaterials and aids in their potential applications in electrochemical sensing and spectroelectrochemical devices. Despite the application of NGr in electrochemical sensing devices, the major challenge for reproducible industrial application still lies in the use of surfactants and binders and the limited knowledge on the correlation between the N-configurations and the electrocatalytic performance of these NGr-based electrodes. Therefore, the purpose of this short review article is to highlight some recent progress on the application of NGr derivatives for electrochemical detection of biomarkers such as uric acid and dopamine. The paper will also illustrate design parameters for new surfactant-free two-dimensional (2D) N-doped graphene based electrochemical sensors with variable N-functionalities for the detection of dopamine and uric acid.
To date, the world has been making a massive shift away from fossil fuels towards cleaner energy sources. For the past decade, polymer electrolyte membrane fuel cells (PEMFCs) powered by hydrogen have attracted much attention as a promising candidate for eco-friendly vehicles, i.e. fuel cell electric vehicles (FCEVs), owing to their high power density, high efficiency and zero emission features. Since the world’s first mass production of Tucson ix35 FCEV by Hyundai in 2013, global automotive original equipment manufacturers (OEMs) have focused on commercialising FCEVs. In 2018, Hyundai also unveiled the second generation of the mass-produced FCEV (i.e. Nexo) with improved performances and durability compared with its predecessor. Since then, the global market for PEMFCs for a variety of FCEV applications has been growing very rapidly in terms of both passenger vehicles and medium- and heavy-duty vehicles such as buses and trucks, which require much higher durability than passenger vehicles, i.e. 5000 h for passenger vehicles vs. 25,000 h for heavy-duty vehicles. In addition, PEMFCs are also in demand for other applications including fuel cell electric trains, trams, forklifts, power generators and vessels. We herein present recent advances in how hydrogen and PEMFCs will power the future in a wide range of applications and address key challenges to be resolved in the future.
Portable electronic devices, electric vehicles and stationary energy storage applications, which encourage carbon-neutral energy alternatives, are driving demand for batteries that have concurrently higher energy densities, faster charging rates, safer operation and lower prices. These demands can no longer be met by incrementally improving existing technologies but require the discovery of new materials with exceptional properties. Experimental materials discovery is both expensive and time consuming: before the efficacy of a new battery material can be assessed, its synthesis and stability must be well-understood. Computational materials modelling can expedite this process by predicting novel materials, both in stand-alone theoretical calculations and in tandem with experiments. In this review, we describe a materials discovery framework based on density functional theory (DFT) to predict the properties of electrode and solid-electrolyte materials and validate these predictions experimentally. First, we discuss crystal structure prediction using the ab initio random structure searching (AIRSS) method. Next, we describe how DFT results allow us to predict which phases form during electrode cycling, as well as the electrode voltage profile and maximum theoretical capacity. We go on to explain how DFT can be used to simulate experimentally measurable properties such as nuclear magnetic resonance (NMR) spectra and ionic conductivities. We illustrate the described workflow with multiple experimentally validated examples: materials for lithium-ion and sodium-ion anodes and lithium-ion solid electrolytes. These examples highlight the power of combining computation with experiment to advance battery materials research.
Despite considerable research efforts, finding a chemically stable electrolyte mixture in the presence of reduced oxygen species remains a great challenge. Previously, dimethyl sulfoxide (DMSO) and sulfolane (tetramethylene sulfone (TMS))-based electrolytes were reported to be stable for lithium air (Li-O2) battery applications. Recently lithium hydroxide (LiOH) based chemistries have been demonstrated to involve supressed side reactions in water-added ether- and DMSO-based electrolytes. Herein, we investigate the impact of DMSO-based electrolyte and sulfolane co-solvent on cell chemistry in the presence of water. We found that DMSO-based electrolyte leads to formation of a peroxide-hydroxide mixture as discharge products and the removal of both LiOH and lithium peroxide (Li2O2) on charging from 3.2–3.6 V (vs. Li+/Li) is observed. In the presence of sulfolane as co-solvent, a mixture of Li2O2 and LiOH is formed as major discharge products with slightly more LiOH formation than in the absence of sulfolane. The presence of sulfolane has also significant effects on the charging behaviour, exhibiting a clearer 3 e−/O2 oxygen evolution reaction profile during the entire charging process. This work provides insights into understanding the effects of the primary solvent on promoting LiOH formation and decomposition in lithium iodide (LiI) mediated non-aqueous Li-O2 batteries.
Introduction The Americas International Meeting on Electrochemistry and Solid State Science was a joint international conference of the 234th Meeting of The Electrochemical Society (ECS), the XXXIII Congreso de la Sociedad Mexicana de Electroquimica (SMEQ) and the 11th Meeting of the Mexico Section of the Electrochemical Society. It was well attended with worldwide representation including...
The market for hydrogen fuel cell vehicles (FCVs) continues to grow worldwide. At present, early adopters rely on a sparse refuelling infrastructure, and there is only limited knowledge about how they evaluate the geographic arrangement of stations when they decide to get an FCV, which is an important consideration for facilitating widespread FCV diffusion. To address this, we conducted several related studies based on surveys and interviews of early FCV adopters in California, USA, and a participatory geodesign workshop with hydrogen infrastructure planning stakeholders in Connecticut, USA. From this mixed-methods research project, we distil 15 high-level findings for planning hydrogen station infrastructure to encourage FCV adoption.
With the electric vehicle (EV) market set to grow rapidly over the coming years, the industry faces a challenging ramp-up of volume and material performance demands. From the current trend towards high-energy high-nickel cathode materials, driven in-part by consumer range anxiety, to the emergence of solid-state and beyond lithium-ion technologies, herein we review the changing requirements for active materials in automotive Li-ion battery (LIB) applications, and how science and industry are set to respond.
The Hydrogen South Africa (HySA) programme is based upon the beneficiation of South Africa's large platinum group metal (pgm) resources. The present article summarises some of the progress by HySA Systems, one of the three Competence Centres under the HySA Programme, since 2008. Work has been carried out on membrane electrode assembly and stack development for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) for use in combined heat and power (CHP) supplied by natural gas and hydrogen fuelled vehicle (HFV) applications. The emphasis is on improved carbon monoxide tolerance and simplified heat and humidity management, allowing simpler fuel cell systems to be designed. Metal hydrides modified with palladium are being explored as poisoning-tolerant hydrogen storage materials for stationary and special mobile applications, and metal organic frameworks (MOFs) modified with platinum as light-weight hydrogen storage with a high hydrogen storage capacity. Lastly research into hydrogen purification using Pd membrane reactors is focused on membrane support synthesis, hollow fibre seeding and development of the plating procedure.
Proteolytic and lipolytic extremely halophilic archaea found in curing salt may contaminate skins during the brine curing process and damage skin structure. In the present study, three proteolytic and lipolytic extremely halophilic archaea were isolated from deteriorated salted sheepskins and characterised using conventional and molecular methods. Each test strain (Haloarcula salaria AT1, Halobacterium salinarum 22T6, Haloarcula tradensis 7T3), a mixed culture of these strains and the mixed culture treated with 1.5 A direct current (DC) were used for brine curing processes of fresh sheepskins and examined during 47 days of storage to evaluate the degree of destruction wreaked by these microorganisms. Both organoleptic properties and scanning electron microscopy (SEM) images of sheepskins proved that each separate test strain and the mixed culture caused serious damage. However, the mixed culture of strains treated with electric current did not damage sheepskin structure. Therefore, we highly recommend sterilisation of brine using DC to prevent archaeal damage on cured hides and skins in the leather industry.
Introduction A select group of researchers are profiled here, all of whom are involved in the design and characterisation of materials for electrochemical energy storage and conversion devices. These include a broad range of battery types, fuel cells, supercapacitors, photovoltaics and devices for the production, storage and utilisation of hydrogen. Many are pioneering the use of advanced...
Following the development of commercial secondary lithium-ion batteries (LIBs), this article illustrates the progress of therein-utilised anode materials from the first successful commercialisation to recent research activities. First, early scientific achievements and industrial developments in the field of LIBs, which enabled the remarkable evolution within the last 20 years of this class of batteries, are reviewed. Afterwards, the characteristics of state-of-the-art commercially available anode materials are highlighted with a particular focus on their lithium storage mechanism. Finally, a new class of anode active materials exhibiting a different storage mechanism, namely combined conversion and alloying, is described, which might successfully address the challenges and issues LIB anodes are currently facing.
In recent years, sodium-ion batteries (NIBs) have been explored as an alternative technology to lithium-ion batteries (LIBs) due to their cost-effectiveness and promise in mitigating the energy crisis we currently face. Similarities between both battery systems have enabled fast development of NIBs, however, their full commercialisation has been delayed due to the lack of an appropriate anode material. Hard carbons (HCs) arise as one of the most promising materials and are already used in the first generation of commercial NIBs. Although promising, HCs exhibit lower performance compared to commercial graphite used as an anode in LIBs in terms of reversible specific capacity, operating voltage, initial coulombic efficiency and cycling stability. Nevertheless, these properties vary greatly depending on the HC in question, for example surface area, porosity, degree of graphitisation and defect amount, which in turn are dependent on the synthesis method and precursor used. Optimisation of these properties will bring forward the widespread commercialisation of NIBs at a competitive level with current LIBs. This review aims to provide a brief overview of the current understanding of the underlying reaction mechanisms occurring in the state-of-the-art HC anode material as well as their structure-property interdependence. We expect to bring new insights into the engineering of HC materials to achieve optimal, or at least, comparable electrochemical performance to that of graphite in LIBs.
The status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H2 purity requirements and ease the transition from H2 derived from natural gas to H2 produced from water and renewable energy sources.