Introduction The third UK Energy Storage Conference (UKES2016) was held at the Edgbaston campus of the University of Birmingham, UK, from midday on Wednesday 30th November to midday on Friday 2nd December 2016. The aim of the conference, organised by the Energy Storage Research Network on behalf of the UK Research Council funded Energy SuperStore Hub and chaired by Professor Nigel Brandon...
Lithium Sulfur: Mechanism, Modelling and Materials (Li-SM3) was organised by Oxis Energy Ltd, UK, Imperial College London, UK, and the Joint Center for Energy Storage Research (JCESR), USA. It was held at the Institution of Engineering and Technology (IET), Savoy Place, London from 26th–27th April 2017. More than 150 researchers from around the world attended this event, 44 of them...
Introduction The Royal Society of Chemistry Faraday Discussions are a series of meetings focusing on rapidly developing areas of physical chemistry. Contrary to typical conferences, Faraday Discussions rely on the active participation of speakers and audience alike. Topics for each session are based on new research papers submitted specifically for the meeting. Audience participation is...
Rechargeable metal-oxygen cells could exceed the stored energy of today’s most advanced lithium-ion cells. However challenges exist that must be overcome to bring this technology into practical application. These challenges include, among others, the recharge and cyclability efficiency, materials development and improvements in fundamental understanding of the electrochemistry and chemistry inside the cell. The common challenges for the anode, including corrosion, passivation and dendrite formation and those for the air cathode and the electrolyte are summarised in this review for cells based on magnesium, calcium, aluminium, silicon, zinc and iron.
Introduction “Electrochemistry: Volume 14” is a collated book of five papers edited by Craig Banks (Manchester Metropolitan University, UK) and Steven McIntosh (Lehigh University, Bethlehem PA, USA), both of whom are well established in the field with research interests covering the topics in the book. The book is one of a series which aims to collate and summarise the key topics receiving...
Historically, Johnson Matthey has had a long association with electrochemistry, and perhaps this was inevitable because of the importance of the platinum group metals (pgm) to Johnson Matthey’s early development. Platinum, in particular, has been incredibly useful in the field, because of its exceptional electrocatalytic activity and impressive inertness in most environments. Famously,...
Introduction A select group of researchers are profiled here, all of whom are involved in the design and characterisation of materials for electrochemical energy storage and conversion devices. These include a broad range of battery types, fuel cells, supercapacitors, photovoltaics and devices for the production, storage and utilisation of hydrogen. Many are pioneering the use of advanced...
Electrochemistry studies on the derivatives of graphene have been in the forefront of chemical research in recent years. The large specific surface area, high electrical conductivity, fast electron transfer rate and excellent biocompatibility to biomolecules constitute a few of the underlying reasons for the extensive application of graphene derivatives in modern electrochemistry and related technologies. Much interest in graphene derivatives has been driven by the ease of intentional functionalisation of the carbon backbone of graphene with dopants, such as nitrogen. Doping enhances the electrical conductivity and biocompatibility of nitrogen-doped graphene (NGr) nanomaterials and aids in their potential applications in electrochemical sensing and spectroelectrochemical devices. Despite the application of NGr in electrochemical sensing devices, the major challenge for reproducible industrial application still lies in the use of surfactants and binders and the limited knowledge on the correlation between the N-configurations and the electrocatalytic performance of these NGr-based electrodes. Therefore, the purpose of this short review article is to highlight some recent progress on the application of NGr derivatives for electrochemical detection of biomarkers such as uric acid and dopamine. The paper will also illustrate design parameters for new surfactant-free two-dimensional (2D) N-doped graphene based electrochemical sensors with variable N-functionalities for the detection of dopamine and uric acid.