Ruthenium targets were prepared by vacuum hot pressing of ruthenium powder with different morphologies. Ruthenium films were then deposited on a SiO2/Si(100) substrate for different times by radio frequency (RF) magnetron sputtering. The relationship in terms of the microstructure and electrical properties between the ruthenium targets and resultant films at different conditions were studied by means of field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe. The results showed that parameters such as the average deposition rate, surface roughness, crystallisation properties and growth rate were directly related to the homogeneity of the microstructure of the ruthenium targets, but there was no correlation between the crystal orientations of the films and the targets. Moreover, the resistivity of ruthenium films was positively correlated with that of the ruthenium targets.
Renewable and low-carbon hydrogen will contribute to a future climate-neutral economy as a fuel, clean energy carrier and feedstock. One of the main concerns when considering its production by the present proton exchange membrane water electrolysers (PEMWE) is the use of scarce and expensive noble metals as catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), because they contribute to increase the cost of the technology. Several strategies have been developed to overcome this drawback, such as optimising the catalyst loading in the electrodes and alloying or using alternative catalyst supports, always with the aim to maintain or even increase electrolyser performance and durability. In this review, we examine the latest developments in HER and OER catalysts intended for practical PEMWE systems, which point in the short term to the use of platinum and iridium nanoparticles highly dispersed at low loadings on conductive non-carbon supports.
Bushings made of platinum-rhodium alloys are a key component in glass fibre production. While bushings have grown in size and functionality since their introduction in the early 20th century, manufacturing constraints still limit their full potential. Both in terms of design and quality, traditional manufacturing methods such as milling, drilling and welding limit the potential of precious metal bushings. The technical feasibility of the use of additive manufacturing for the production of bushings is greatly dependent on the material properties. For the purpose of this work, an additively manufactured alloy consisting of 90 wt% platinum and 10 wt% rhodium (PtRh10) is investigated with regard to density, electrical resistivity, creep performance and the contact angle of E-glass on the PtRh10 samples.