In our previous study, retinyl palmitate was successfully encapsulated by melt dispersion using waxes as shell materials. Herein, the objective of the present research is to evaluate the shelf life and kinetic release of the developed microcapsules. The study was conducted by measuring actual loading capacity over a period of time using spectroscopic analysis. The transfer percentage of particles from nonwoven facial wipes to skin-like surfaces was also investigated by simulating the rubbing mechanism with a robotic transfer replicator. Although particles stored as powder form under room temperature showed only eight days of shelf-life, particles stored as a dispersion in a refrigerator maintained 60% of the theoretical loading capacity after one month. The kinetic release profile of the particles in ethanol with shaking at 100 rpm and 37±2°C showed an initial burst in the first half an hour, followed by a sustained release. It also showed that 98% of the retinyl palmitate content released within 4 h. Particles incorporated into wet nonwoven wipes gave approximately 22% transfer to skin-like fabric. Thus, the study shows potentials of delivering skincare properties by means of retinyl palmitate capsule loaded textile substrates.
Turkey is a home country for a good number of fermented beverages derived from milk, cereals, fruits and vegetables, and several studies have reported the probiotic potentiality of these beverages. Probiotics, otherwise known as beneficial microorganisms possess the ability to exert antimicrobial effects, which is one of the most important selection criteria for their use in commercial products. In the current study, the antimicrobial activities of potential probiotic bacteria isolated from five fermented traditional Turkish beverages (boza, kefir, ayran, shalgam juice and hardaliye) were evaluated. The bacterial isolates were morphologically characterised and genotypically identified by 16S rRNA gene sequence analysis. The antimicrobial effects of the isolates against selected human pathogens were assessed using spot-on-the-lawn and agar well diffusion assays. 18 of the 22 strains displayed varying degrees of antagonism against the tested pathogens. Amongst the isolates, the strongest antimicrobial effects were exhibited by strains from boza, kefir and shalgam which can be attributed to their greater microbiota diversity. Strain specificity in the activities of the obtained isolates and specificity with the different indicator pathogens tested was observed. The antimicrobial effects exhibited by boza, kefir and shalgam isolates offer a promising health benefit to consumers of these fermented probiotic products.
In this work, seven different extracts from pomegranate (Punica granatum L., cv. Hicaz nar) peel were prepared by using different solvents (ethanol, methanol, either alone or in combination with acid, acetone and water). The phenolics (punicalagins and ellagic acid), organic acids (citric acid and malic acid) and sugars of pomegranate peel extracts (PPEs) were determined. The highest amounts of punicalagins and ellagic acid were detected by ethanol-acid extract as 13.86% and 17.19% w/v respectively, whereas the lowest levels were obtained with acetone and water extracts. Moreover, the methanol-acid (3.19% malic acid) and ethanol-acid (1.13% citric acid) extracts contained the highest levels of organic acids. The antimicrobial activities of extracts were investigated by agar well diffusion method. Methanol-acid and ethanol-acid extracts exhibited the highest antimicrobial effects on all tested microorganisms, giving inhibition zones ranging in size from 17 mm to 36 mm. Although similar antimicrobial activities were observed by ethanol, methanol and acetone extracts (up to 24 mm), the lowest antimicrobial activities were attained by water extract (0–15 mm). All extracts were generally more effective against Gram-positive bacteria: Enterococcus faecalis, Bacillus subtilis, Bacillus cereus than Gram-negative ones: Escherichia coli and Enterobacter aerogenes (Klebsiella aerogenes). It was shown that extracts from pomegranate peels represent a good source of bioactive compounds.
Introduction As humans, we seem to desire structure, relationships and laws to understand the universe. Through increased understanding, we can solve the problems and challenges that we perceive. This method and the output are given the label of science. At its best, science provides exquisite understanding, life-changing solutions or sometimes both. The downside of the structures and...
Antibacterial resistant bacteria are a significant problem in the hide or skin soaking process due to their destructive properties on finished leather. Lichens may be a solution to overcome this resistance problem. Enterococcus durans (99.86%) was isolated from soak liquor samples. For screening of possible antibacterial effects of lichen acetone extracts, six lichen species (Hypogymnia tubulosa,H. physodes,Evernia divaricata, Pseudevernia furfuracea, Parmelia sulcata and Usnea sp.) were examined by nine-fold dilution against E. durans.H. tubulosa,H. physodes and E. divaricata extracts showed antibacterial effects at the concentrations of 240 μg ml−1, 120 μg ml−1 and 60 μg ml−1 whereas the extracts of P. furfuracea had an antibacterial effect at 240 μg ml−1 and 120 μg ml−1. On the other hand, P. sulcata had no antibacterial effect. The most successful lichen extract was determined to be Usnea sp. at the concentrations of 240 μg ml−1, 120 μg ml−1, 60 μg ml−1, 30 μg ml−1 and 15 μg ml−1. In conclusion, lichen extracts seem to have potential antibacterial efficacies against E. durans.
Introduction “Process Systems Engineering for Pharmaceutical Manufacturing” is an ambitious reference comprising 24 chapters covering process systems engineering (PSE) methods and case studies of interest to engineers working in pharmaceutical process development, model development, process simulation, process optimisation and supply-chain or enterprise optimisation. Business model...
Saif A. Khan is an Associate Professor in the Department of Chemical and Biomolecular Engineering at the National University of Singapore (NUS). He is a chemical engineer by training and his research spans the areas of chemical reaction engineering, microfluidics, micro- and mesoscale flow reactors and their applications in chemistry and materials science. His research group at NUS...
The formulation and delivery of the biologically active ingredients (AIs) (for example, agrochemicals and active pharmaceutical ingredients (APIs)) is an inherently interdisciplinary area of research and development. In this short review we discuss the evolution of AI and API delivery systems towards smart stimuli-responsive formulations with precisely controlled delivery for specific applications. We also highlight a few examples of such systems using AIs from Johnson Matthey’s controlled substance and API portfolio.