The principal possibility of processing the industrial poor collective concentrates of platinum group metals (pgms) using a hydrocarbonyl technology with the selective concentration of pgms from poor multicomponent chloride and chloride-sulfate solutions with the subsequent production of pure pgms is shown.
For the metals used in jewellery, high hardness and the associated scratch resistance are much sought after. Conventional crystalline alloys for jewellery are alloyed and extensively processed (thermally and mechanically) to improve hardness, but it is difficult to reach values beyond 300 HV. The advent of bulk metallic glasses (BMGs), based on precious metals and with hardness exceeding 300 HV in the as-cast state, is therefore of great interest for both jewellery and watchmaking. The non-crystalline structure of these materials not only gives high hardness, but also the opportunity to shape metals like plastics, via thermoplastic forming (TPF). For more traditional jewellery manufacture, BMGs also exhibit high-definition and near-net-shape casting. Gold-based alloys have long dominated the consideration of BMGs for jewellery as they can comply with 18 karat hallmarks. Although BMGs based on platinum or palladium possess excellent thermoplastic formability and are without known tarnishing problems, achieving useful glass-forming ability (GFA) within the more restrictive hallmarking standards typically used for jewellery (≥95 wt% platinum or palladium) is at best challenging. In this two-part review, platinum- and palladium-based BMGs are discussed, focusing on their potential application in jewellery and on the further research that is necessary.
Introduction Platinum group metals (pgms) have widespread applications as functional materials in many different industries. The applications range from catalytic surfaces or particles, sensors, biomedical imaging or drug delivery systems and thermocouples up to jewellery items that we use for special moments of our life. The pgms are used as solid bulk materials, powders, thin films,...
It is known that platinum-rhodium thermocouples exhibit mass loss when in the presence of oxygen at high temperatures due to the formation of volatile oxides of platinum and rhodium. The mass losses of platinum, Pt-6%Rh and Pt-30%Rh wires, commonly used for thermocouples, were considered in this paper to characterise the mass loss of wires of the three compositions due to formation and evaporation of the oxides PtO2 and RhO2 under the conditions that would be seen by thermocouples used at high temperature. For the tests, the wires were placed in thin alumina tubes to emulate the thermocouple format, and the measurements were performed in air at a temperature of 1324°C, i.e. with oxygen partial pressure of 21.3 kPa. It was found that the mass loss of the three wires increases linearly with elapsed time, consistent with other investigations, up to an elapsed time of about 150 h, but after that, a marked acceleration of the mass loss is observed. Remarkably, previous high precision studies have shown that a crossover after about 150 h at 1324°C is also observed in the thermoelectric drift of a wide range of platinum-rhodium thermocouples, and the current results are compared with those studies. The mass loss was greatest for Pt-30%Rh, followed by Pt6%Rh, then platinum.