Platinum-based alloys are being developed for high-temperature applications with the aim of replacing some of the currently used nickel-based superalloys (NBSAs) and benchmark alloy, PM2000. The platinum-based superalloys have a similar structure to the NBSAs and can potentially be used at higher temperatures and in more aggressive environments because platinum is more chemically inert and has a higher melting point. In this paper, the recent progress in research and development of platinum-based superalloys is overviewed. Firstly, the composition optimisation and structural design of platinum-base superalloys are introduced. The structural characteristics, mechanical properties, oxidation resistance and corrosion behaviour of platinum-aluminium ternary, quaternary and multiple superalloys are summarised. Finally, directions for further research and application of platinum-based superalloys are analysed and prospected.
Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.
It is known that platinum-rhodium thermocouples exhibit mass loss when in the presence of oxygen at high temperatures due to the formation of volatile oxides of platinum and rhodium. The mass losses of platinum, Pt-6%Rh and Pt-30%Rh wires, commonly used for thermocouples, were considered in this paper to characterise the mass loss of wires of the three compositions due to formation and evaporation of the oxides PtO2 and RhO2 under the conditions that would be seen by thermocouples used at high temperature. For the tests, the wires were placed in thin alumina tubes to emulate the thermocouple format, and the measurements were performed in air at a temperature of 1324°C, i.e. with oxygen partial pressure of 21.3 kPa. It was found that the mass loss of the three wires increases linearly with elapsed time, consistent with other investigations, up to an elapsed time of about 150 h, but after that, a marked acceleration of the mass loss is observed. Remarkably, previous high precision studies have shown that a crossover after about 150 h at 1324°C is also observed in the thermoelectric drift of a wide range of platinum-rhodium thermocouples, and the current results are compared with those studies. The mass loss was greatest for Pt-30%Rh, followed by Pt6%Rh, then platinum.
The principal possibility of processing the industrial poor collective concentrates of platinum group metals (pgms) using a hydrocarbonyl technology with the selective concentration of pgms from poor multicomponent chloride and chloride-sulfate solutions with the subsequent production of pure pgms is shown.