The down-scaling of nanoelectronic devices to ever smaller dimensions and greater performance has pushed silicon-based devices to their physical limits. Much effort is currently being invested in research to examine the feasibility of replacing Si by a higher mobility semiconductor, such as germanium, in niche high-performance metal oxide semiconductor (MOS) devices. Before Ge can be adopted in industry, a suitable contact material for the active areas of a transistor must be identified. It is proposed that platinum group metal (pgm) germanides be used for this purpose, in a similar manner as metal silicides are used in Si technology. Implementation of Ge-based technology requires a thorough understanding of the solid-state interactions in metal/Ge systems in order to foresee and avoid problems that may be encountered during integration. We present a systematic study of the solid-state interactions in germanide systems of four of the pgms: iridium, platinum, palladium and rhodium. Our approach was essentially twofold. Firstly, conventional thin film couples were used to study the sequence of phase formation in the germanide systems. Conventional thin film couples were also used to identify and monitor the dominant diffusing species during the formation of some of the germanides as these can influence the thermal stability of a device. Secondly, we observed and analysed several aspects of the lateral diffusion reactions in these four systems, including activation energies and diffusion mechanisms. Lateral diffusion couples were prepared by the deposition of thick rectangular islands of one material on to thin films of another material. Rutherford backscattering spectrometry (RBS) and microprobe-Rutherford backscattering spectrometry (μRBS) were used to analyse several aspects of the thin film and lateral diffusion interactions respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were also employed.
BIORECOVER brings together diverse expertise with the goal of developing a new sustainable and safe process, essentially based on biotechnology, for selective extraction of critical raw materials (CRMs), rare earth elements (REE), magnesium and platinum group metals (pgms). The four-year European Union (EU) H2020 project involves 14 international partners from mining, microbiology, chemistry, engineering, metallurgy, sustainable process development, as well as CRM end-users. Starting from relevant unexploited secondary and primary sources of CRMs, BIORECOVER will develop and integrate three stages for CRM extraction: (a) removal of major impurities present in raw materials; (b) mobilisation of CRMs through use of microorganisms; and (c) development of specific technologies for recovering metals with high selectivity and purity that meet the quality requirements for reuse. Downstream processes will be developed and recovered metals will be assessed by end-users. Modelling and integration of the modular stages and economic and environmental assessment will be done to develop the most effective and sustainable process. This short feature describes the aims and approach, project technologies and intended outputs of the BIORECOVER project.
Platinum-based knitted gauzes are the most efficient catalysts for the production of nitric oxide, as a precursor to the manufacture of nitric acid and caprolactam. Decades of research and optimisation have resulted in a greater understanding of ammonia oxidation kinetics and associated metal movement within these catalyst packs, along with the development of beneficial binary and ternary alloys. The design of a pack has evolved from the simple addition or removal of metal to modelling the optimal installed metal content and distribution. This review discusses the fundamental kinetics and in situ metal loss for ammonia oxidation catalysts in nitric acid applications and outlines how they can, in conjunction with prevailing platinum group metal (pgm) market conditions and plant key performance indicators (KPIs), influence the optimal catalyst design.
The thermodynamic properties were reviewed by the author in 1995. A new assessment of the enthalpy of fusion at 68.0 ± 1.7 kJ mol−1 leads to a revision of the thermodynamic properties of the liquid phase and although the enthalpy of sublimation at 298.15 K is retained as 788 ± 4 kJ mol−1 the normal boiling point is revised to 5565 K at one atmosphere pressure.
Deformation and fracture behaviour of cold drawing iridium wire under tension at room temperature is examined. High purity polycrystalline iridium was manufactured using pyrometallurgical technology. During the initial stage of cold rolling, iridium wire has its usual grain structure and exhibits brittle deformation behaviour: poor plasticity and brittle transgranular fracture (BTF). However, the wire begins demonstrating high plasticity including necking in spite of the brittle fracture mode when the lamellar structure has been formed in iridium during cold drawing.
Clustered together in the centre of the Periodic Table lie six remarkable elements, six metals without which the world would be a completely different place. Think about the food you eat, your computer, your car, your mobile phone or even the clothes you wear. At some stage during their production one or more of these six rare metals has been utilised, whether as a catalyst or perhaps in...
Platinum-based alloys are being developed for high-temperature applications with the aim of replacing some of the currently used nickel-based superalloys (NBSAs) and benchmark alloy, PM2000. The platinum-based superalloys have a similar structure to the NBSAs and can potentially be used at higher temperatures and in more aggressive environments because platinum is more chemically inert and has a higher melting point. In this paper, the recent progress in research and development of platinum-based superalloys is overviewed. Firstly, the composition optimisation and structural design of platinum-base superalloys are introduced. The structural characteristics, mechanical properties, oxidation resistance and corrosion behaviour of platinum-aluminium ternary, quaternary and multiple superalloys are summarised. Finally, directions for further research and application of platinum-based superalloys are analysed and prospected.
Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.