The use of various sintering technologies, allied to suitable powder metallurgy, has long been the subject of discussion within the global jewellery manufacturing community. This exciting, once theoretical and experimental technology is now undoubtedly a practical application suitable for the jewellery industry. All parts of the jewellery industry supply and value chains, and especially design and manufacturing, now need to become aware very quickly of just how unsettling and disruptive this technology introduction has the potential to become. This paper will offer various viewpoints that consider not only the technology and its application to jewellery manufacture but will also consider the new design potentials of the technology to the jewellery industry. It will also briefly consider how that design potential is being taught to future generations of jewellery designers at the Birmingham School of Jewellery. We shall also discuss in some detail the economics of and potential for new and different business models that this technological paradigm might offer the jewellery industry.
In this paper, changes in the mechanical properties of Pd-5Ni alloy are analysed after recrystallisation annealing in order to determine the optimal conditions for a thermomechanical processing regime for this alloy. The temperature and annealing time were varied and the resulting changes in hardness, tensile strength, relative elongation and proof strength were monitored. By using the simplex-lattice method and analysing experimental data, a fourth degree mathematical model-regression polynomial was defined and isolines of changes in the mechanical properties of the investigated alloys were designed depending on the conditions of heat treatment after rolling.
The changes in phase state, electrical properties and microhardness of copper-55 at% palladium alloy samples with different initial states (as-quenched and deformed via severe plastic deformation (SPD)) were studied during isothermal annealing. Ordered B2-phase formation in the disordered (A1) matrix was found to occur at a significantly higher temperature than is indicated in the generally accepted phase diagram of the Cu-Pd system. Corresponding electrical resistivity is also lower than reported elsewhere for alloys of similar compositions, at ρ = (27.67 ± 0.04) × 10–8 Ωm, making this the lowest resistivity yet reported for a Cu-Pd alloy with 55 at% Pd.
Electrical resistivity values for both the solid and liquid phases of the platinum group metals (pgms) rhodium and iridium are evaluated. In particular improved values are obtained for the liquid phases of these metals.
In the 2014 review (1) discovery circumstances for 85Ru and 86Ru were referenced only in the form of a preprint but have now been reported in the open literature (2). For the most recently discovered isotopes the discovery years for both 128Rh and 90Pd are the manuscript dates of the given references whilst for 125Ru, 130Pd and 131Pd the common discovery year corresponds to the original...
In the 2012 review (1) the isotope 209Pt was included based on a claim to its discovery by Kurcewiz et al. which was reported in a preprint (2). However when the actual paper was published (3) it was considered that the evidence for 209Pt was unsatisfactory and it was no longer included. Therefore the number of known isotopes for platinum has been amended in Table I. In addition one...
This paper provides a database of mechanical properties for most of the commercially available platinum alloys currently in use for jewellery purposes. The alloys were tested for mechanical properties through tensile and microhardness testing in the as-cast and hot isostatically pressed conditions. Microstructural characterisations were performed using scanning electron microscopy (SEM).
Platinum has only been known to Europe since the 16th century. This was impure platinum, found as grains of native metal in alluvial deposits and comprising mainly platinum alloyed with the other five platinum group metals. They were exploited by pre-Colombian native populations of Ecuador and Colombia. In more recent times, the use of platinum in jewellery dates from the late 19th or early 20th centuries, often as a basis for diamond (and other precious gemstone) jewellery. Early jewellery alloys tended to be based on the existing industrial alloys and comparatively little development of specific jewellery alloys was carried out. Its acceptance as a hallmarkable jewellery metal came in 1975 when, with wider availability of the metal, platinum was promoted as a high-value jewellery metal. Platinum jewellery started to grow in popularity, mainly at 950 and 900 fineness qualities. Since that time there has been alloy development specifically for jewellery application and tailored to the requirements of different manufacturing technologies. This review examines the evolution of platinum jewellery alloys over the past century against the challenges presented in developing improved alloys for jewellery application. There has been a substantial increase in alloy development over the past 30 years, particularly focused on improved investment (lost wax) casting alloys as well as better mechanical properties.