The successful use in rocket engines of iridium as a barrier coating is an important area of high-temperature application. The Ir coating must be continuous and dense in order to protect the underlying material from corrosion and oxidation. The microstructure and morphology of the coating can be effectively controlled by varying the deposition conditions. The microstructure has an important influence on the physical and mechanical properties of the coating. A number of deposition processes, which have different conditions and requirements, have been employed to produce Ir coatings on various substrate materials. Part I of this paper presents the introduction and reviews the different deposition processes, while Part II will deal with texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment will also be investigated in some detail.
Platinum-rhodium gauzes are frequently used to catalyse the high temperature ammonia oxidation step for production of synthetic nitrogen-based fertilisers. The gauzes suffer from Pt loss in the form of platinum dioxide (PtO2), due to the highly exothermic nature of the oxidation reaction. Industrially this is mitigated by installing one or more palladium-nickel catchment gauzes directly downstream of the combustion gauzes, to capture the lost Pt. The Pd-Ni catchment gauzes undergo severe structural modification during operation. In this study, we undertake a systematic study in a laboratory-scale furnace system to determine the role of each of the constituent gases O2, H2O and PtO2 on the structural changes of the Pd-Ni gauzes. In addition, some samples are exposed to real industrial conditions in an ammonia combustion pilot plant reactor. Fresh and spent catchment gauzes are analysed by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectroscopy/optical emission spectroscopy (ICP-MS/OES). By combining analysis of samples from furnace and pilot scale experiments, the main findings are that Pd-Ni gauzes undergo internal oxidation to nickel(II) oxide (NiO); which in the presence of steam results in Ni depletion and that PtO2 vapour causes severe grain reconstruction. Furthermore, in laboratory-scale experiments no significant Pd loss is observed, which is in contrast to observations from the pilot plant where the samples are exposed to real post-ammonia oxidation conditions. Pd loss is likely attributed to some gas species contained in the real post-ammonia oxidation gas stream.
Johnson Matthey is keen to encourage research into future applications of platinum group metals (pgms). As a global leader in sustainable technologies, our focus is on clean air, clean energy, healthcare and the efficient use of the planet’s natural resources – and on the fundamental properties of pgms on which these applications depend. Johnson Matthey’s commitment to progress in platinum...
Since the 2018 review (1) one new light isotope of mass 165 (2) and four new heavy isotopes of masses 209 to 212 (3) have been identified for platinum (Table I). The heavy isotopes are only identified as being ‘particle stable’ – that is resistant to proton or neutron decay but all are expected to decay by beta decay in which an electron and anti-electron neutrino are emitted when a...