The effects of hot isostatic pressing (HIP) on castings produced in a variety of platinum alloys was investigated. A number of benefits were observed, including a reduction in porosity and improvements to the microstructure and mechanical properties. Differences in the response to HIP of individual alloys is evaluated as well as some inherent limitations of the HIP process.
Introduction The 10th International Symposium on Continuous Flow Reactor Technology for Industrial Applications was held at the Ramada Plaza Milano Hotel Conference Centre, Milan, Italy from Tuesday 13th November to Thursday 15th November 2018. The event had 160 delegate attendees, mostly from equipment suppliers including: AM Technology, UK; Chemtrix, The Netherlands; Corning, USA;...
Squalene (SQE) was fully converted into squalane (SQA) in a continuous reactor. The design of a three-dimensional (3D) printed support allowed selectivity to be tuned towards squalane. The advantages of being able to design the geometry of the catalytic support using 3D printing technology are presented in this paper.
The productivity and efficiency of continuous manufacturing have long been exploited for benefit in bulk chemical production applications. For decades chemical manufacturers have put continuous manufacturing processes to good use, producing millions of metric tonnes annually utilising a relatively small manufacturing footprint. Often tens of per cent of the global production of large...
With a design guided by computational fluid dynamics (CFD), additively manufactured from base metals and coated with metal catalysts using cold spray technology or electroplating, catalytic static mixers are used to replace fixed bed columns in continuous flow reactors. We have shown their versatility in gas-liquid hydrogenations and homogeneous transfer hydrogenations and review here their preparation, stability and wider use in catalytic transformations using flow reactors. Additive manufacturing provides complex mixer structures that can be retrofitted to existing reactor geometry and reduces manufacturing costs by removing abrasive blasting steps in the mixer fabrication process. The rough surface profile of the mixers aids with high metallurgical bonding of the catalyst coating, as shown by the low catalyst leaching levels reported here.
Solvent extraction is a key separation process in several industries. Mixer-settlers and agitated or pulsed columns are mainly used as liquid-liquid contactors. However, these units require large solvent inventories and long residence times, while flow fields are often not uniform and mixing is poor. These drawbacks can be overcome with process intensification approaches where small channel extractors are used instead. The reduced volumes of small units in association with the increased efficiencies facilitate the use of novel, often expensive, but more efficient and environmentally friendly solvents, such as ionic liquids. The small throughputs of intensified contactors, however, can limit their full usage in industrial applications, thus robust scale-up strategies need to be developed. This paper reviews promising intensified technologies for liquid-liquid extractions based on small channels. In particular, extractions in single channels and in confined impinging jets are considered. The increase in throughput via scale-out approaches with appropriate manifolds is discussed, based on the use of many channels in parallel. The combination of small channels and centrifugal forces is exploited in counter-current chromatography (CCC) systems where many mixing and settling steps are combined within the contactors. Scale up is possible via centrifugal partition chromatography (CPC) configurations.
Understanding the manufacture and operation of automotive emissions control particulate filters is important in the optimised design of these emissions control systems. Here we show how magnetic resonance imaging (MRI) can be used to understand the drying process, which is part of the manufacture of catalysed particulate filters. Comparison between a wall-flow particulate filter substrate and a flow-through monolith (FTM) has been performed, with MRI giving spatial information on the drying process. We have also used MRI to study the fluid dynamics of a gasoline particulate filter (GPF). Inlet and outlet channel gas velocities have been measured for a clean GPF and two GPF samples loaded with particulate matter (PM) to understand the effect of PM on the filter flow profiles and porous wall permeability as soot is deposited.
The recent increase in the number of policies to protect the environment has led to a rise in the worldwide demand for activated carbon, which is the most extensively utilised adsorbent in numerous industries and has a high probability to be used in the energy and agriculture sectors as electrodes in supercapacitors and for fertiliser production. This paper is about the production of activated biochar from oak woodchips char generated by an updraft fixed bed gasifier reactor. Following this, using steam as activating agent and thermal energy from produced synthesis gas (syngas), the resulting highly microporous carbonaceous biomaterial was subjected to physical activation at 750ºC. The properties of activated biochar include adsorption or desorption of nitrogen to identify the physical adsorption and surface area measurement, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The biochar surface area, generated as a result of the gasification process, showed substantial improvement after steam activation. Also, significant discrepancies were obtained from the surface volume and areas of biochar byproducts from the gasifier and activated biochar obtained by steam activation after the gasification treatment (total pore volume 0.022 cm3 g−1 and 0.231 cm3 g−1, Brunauer–Emmett–Teller (BET) surface area 21.35 m2 g−1 and 458.28 m2 g−1, respectively). The two samples also yielded noteworthy differences in performance. As a consequence, it may be concluded that the kinetics of steam gasification is quicker and more efficient for the conversion of biochar to activated carbon. The pore sizes of the carbon produced by steam activation were distributed over a wide spectrum of values, and both micro- and mesoporous structures were developed.
Industrial processes contribute significantly to global carbon dioxide emissions, with iron and steel manufacturing alone responsible for 6% of the total figure. The STEPWISE project, funded through the European Horizon 2020 (H2020) Low Carbon Energy (LCE) programme under grant agreement number 640769, is looking at reducing CO2 emissions in the iron and steel making industries. At the heart of this project is the ECN technology called sorption-enhanced water-gas shift (SEWGS), which is a solid sorption technology for CO2 capture from fuel gases such as blast furnace gas (BFG). This technology combines water-gas shift (WGS) in the WGS section with CO2/H2 separation steps in the SEWGS section. Scaling up of the SEWGS technology for CO2 capture from BFG and demonstrating it in an industrially relevant environment are the key objectives of the STEPWISE project, which are achieved by international collaboration between the project partners towards design, construction and operation of a pilot plant at Swerea Mefos, Luleå, Sweden, next to the SSAB steel manufacturing site.
The principal possibility of processing the industrial poor collective concentrates of platinum group metals (pgms) using a hydrocarbonyl technology with the selective concentration of pgms from poor multicomponent chloride and chloride-sulfate solutions with the subsequent production of pure pgms is shown.
C123 is a €6.4 million European Horizon 2020 (H2020) integrated project running from 2019 to 2023, bringing together 11 partners from seven different European countries. There are large reserves of stranded natural gas waiting for a viable solution and smaller scale biogas opportunities offering methane feedstocks rich in carbon dioxide, for which utilisation can become an innovation advantage. C123 will evaluate how to best valorise these unexploited methane resources by an efficient and selective transformation into easy-to-transport liquids such as propanol and propanal that can be transformed further into propylene and fed into the US$6 billion polypropylene market. In C123 the selective transformation of methane to C3 hydrocarbons will be realised via a combination of oxidative conversion of methane (OCoM) and hydroformylation, including thorough smart process design and integration under industrially relevant conditions. All C123 technologies exist at TRL3 (TRL = technology readiness level), and the objectives of C123 will result in the further development of this technology to TRL5 with a great focus on the efficient overall integration of not only the reaction steps but also the required purification and separation steps, incorporating the relevant state-of-the-art engineering expertise.
A flexible combined heat, power and fuel production concept, FlexCHX, is being developed for managing the seasonal mismatch between solar energy supply and the demand for heat and power characteristic of northern and central Europe. The process produces an intermediate energy carrier (Fischer-Tropsch (FT) hydrocarbon product), which can be refined to transportation fuels using existing refineries. The FlexCHX process can be integrated into various combined heat and power (CHP) production systems, both industrial CHPs and communal district heating units. In the summer season, renewable fuels are produced from biomass and hydrogen; the hydrogen is produced from water via electrolysis that is driven by low-cost excess electricity from the grid. In the dark winter season, the plant is operated only with biomass in order to maximise the production of the much-needed heat, electricity and FT hydrocarbons. Most of the invested plant components are in full use throughout the year with only the electrolysis unit being operated seasonally. The catalytic reformer plays a key role in this process by converting tars and light hydrocarbon gases into synthesis gas (syngas) and by bringing the main gas constituents towards equilibrium. Developmental precious metal catalysts were used, and an optimal reformer concept was established and tested at pilot scale. Reforming results obtained at pilot gasification tests with commercial nickel catalysts and with the developed precious metal catalysts are presented.
PLATInum group metals Recovery Using Secondary raw materials (PLATIRUS), a European Union (EU) Horizon 2020 project, aims to address the platinum group metal (pgm) supply security within Europe by developing novel and greener pgm recycling processes for autocatalysts, mining and electronic wastes. The initial focus was on laboratory-scale research into ionometallurgical leaching, microwave assisted leaching, solvometallurgical leaching, liquid separation, solid phase separation, electrodeposition, electrochemical process: gas-diffusion electrocrystallisation and selective chlorination. These technologies were evaluated against key performance indicators (KPIs) including recovery, environmental impact and process compatibility; with the highest scoring technologies combining to give the selected PLATIRUS flowsheet comprising microwave assisted leaching, non-conventional liquid-liquid extraction and gas-diffusion electrocrystallisation. Operating in cascade, the PLATIRUS flowsheet processed ~1.3 kg of spent milled autocatalyst and produced 1.2 g palladium, 0.8 g platinum and 0.1 g rhodium in nitrate form with a 92–99% purity. The overall recoveries from feedstock to product were calculated as 46 ± 10%, 32 ± 8% and 27 ± 3% for palladium, platinum and rhodium respectively. The recycled pgm has been manufactured into autocatalysts for validation by end users. This paper aims to be a project overview, an in‐depth technical analysis into each technology is not included. It summarises the most promising technologies explored, the technology evaluation, operation of the selected technologies in cascade, the planned recycled pgm end user validation and the next steps required to ready the technologies for implementation and to further validate their potential.
It has come to our attention that an image in a recent article published in this journal (1) was incorrectly attributed. The image caption should read as follows. The authors sincerely apologise for the error in attribution. Fig. 3. HIP Unit, courtesy ABRA Fluid AG, Switzerland
The aim of this book “Ball Milling towards Green Synthesis” is to highlight the importance of ball milling as a potential route to produce organic materials. The book was published by the Royal Society of Chemistry and edited by Brindaban Ranu and Achim Stolle. In this book, applications, projects, advantages and challenges related to ball milling for specific organic syntheses are...
Biofilms in industrial cooling tower systems are an important problem. The importance of the surface material in the response to an oxidising biocide (chloramine T trihydrate) was substantiated in our study. Polyvinyl chloride (PVC) cooling tower fill material, stainless steel cooling tower construction material and glass surfaces were compared by evaluating the bacterial loads on materials before and after biocidal treatment. The greatest logarithmic decrease in bacterial load was recorded as >3 log for glass after the first two months and for PVC after the second month. Actively respiring bacterial counts and adenosine triphosphate (ATP) measurements showed that there was no significant difference in the sensitivity of biofilm-associated cells to the biocide on the different surfaces. In addition, the effect of the biocidal treatment decreased with increasing biofilm age, regardless of the material.
Introduction The International Conference on Greenhouse Gas Control Technology is a biennial meeting now in its twelfth incarnation and is a highlight for carbon dioxide sequestration researchers around the globe. The conference was held between 4th–9th October 2014 at the Austin Convention Center, Texas, USA. Over four days the conference encompassed all aspects of the carbon capture...
Introduction “Surface Treatments for Biological, Chemical and Physical Applications” was written to provide an up to date overview of surface modification techniques, with a specific leaning towards applications rather than pure science. The tone of the book strikes a good balance between accessible and technical, and is targeted towards a range of audiences, from undergraduate students to...
Fast pyrolysis for liquids has been developed in recent decades as a fast and flexible method to provide high yields of liquid products. An overview of this promising field is given, with a comprehensive introduction as well as a practical guide to those thinking of applying fast pyrolysis liquids (bio-oil) in various applications. It updates the literature with recent developments that have occurred since the reviews cited herein. Part I contains an introduction to the background, science, feedstocks, technology and products available for fast pyrolysis. Part II will detail some of the promising applications as well as pre-treatment and bio-oil upgrading options. The applications include use of bio-oil as an energy carrier, precursor to second generation biofuels, as part of a biorefinery concept and upgrading to fuels and chemicals.
The International Platinum Group Metals Association (IPA) carried out the first ever industry-wide life cycle assessment on platinum group metals (pgms) which included data from a majority of the industry in both primary and secondary production, as well as one major application of pgms, i.e. their use in a car exhaust catalyst. The results, discussed in this paper, identify that the major impact (72%) of the production of pgms on the environment is from power consumption during mining and ore beneficiation; they also demonstrate that the impacts of pgm production are mitigated by the use of pgm-based automotive catalysts. The exercise provides benchmarking for the industry and a greater understanding of the impacts and benefits of pgms.