Global methanol production in 2016 was around 85 million metric tonnes (1), enough to fill an Olympic-sized swimming pool every twelve minutes. And if all the global production capacity were in full use, it would only take eight minutes. The vast majority of the produced methanol undergoes at least one further chemical transformation, more likely two or three before being turned into a final product. Methanol is one of the first building blocks in a wide variety of synthetic materials that make up many modern products and is also used as a fuel and a fuel additive. This paper looks at the last 100 years or so of the industrial history of methanol production.
Introduction The authors of this book, Professor Jonathan Seville and Professor Chuan-Yu Wu, are globally recognised experts in the field of particle technology. Professor Seville has a degree in Chemical Engineering from the Universities of Surrey and Cambridge, UK, with a strong background in the design and manufacturing of products for the pharmaceutical, home care and fast-moving...
“Advances in Industrial Mixing” is an updated version of the “Handbook of Industrial Mixing” (1). The unchanged text of the “Handbook of Industrial Mixing” is provided electronically (on the accompanying DVD), and only the new or substantially revised contents are provided in the hard copy. The order of the chapters in the “Handbook of Industrial Mixing” is retained in the new version. New...
The United Nations Sustainable Development Goals for 2030 include targets around reducing hunger for people worldwide (1). There are a number of challenges which industry is working hard to address. In farming, the challenges include crop growth and nutrition and making the most of available land for food production. Once the food is harvested, there are further challenges for the food and...
Introduction “Food Packaging” is the seventh volume of Nanotechnology in the Agri-Food Industry, a series aimed at bringing together the most recent and innovative applications of nanotechnology in the agriculture and food industries and to present future perspectives in the design of new or alternative foods. The volume “Food Packaging” presents the development of novel nano-bio-materials...
It is over 100 years since the Haber-Bosch process began in 1913 with the world’s first ammonia synthesis plant. It led to the first synthetic fixed nitrogen, of which today over 85% is used to make fertiliser responsible for feeding around 50% of the world’s human population. With a growing population and rising living standards worldwide, the need to obtain reliable, economic supplies of this vital plant nutrient for crop growth is as important as ever. This article details the historic background to the discovery and development of a process “of greater fundamental importance to the modern world than the airplane, nuclear energy, spaceflight or television” (1, 2). It covers the role of the Billingham, UK, site in developing the process up to the present day. The technology was pioneered in Germany and developed commercially by BASF. In 1998 ICI’s catalyst business, now Johnson Matthey, acquired BASF’s catalytic expertise in this application and now Johnson Matthey is a world-leading supplier of catalyst and technology for ammonia production globally.
World trade has transformed food retailing and driven the development of technology for the transportation and storage of horticultural products, providing year-round supply of fruit and vegetables. Horticultural produce is highly perishable, as fruit and vegetables continue their metabolic processes that lead to ripening and senescence after harvest, making them ultimately unmarketable. Advanced postharvest technologies are essential for reducing food waste while maintaining high standards of safety and quality. Together with cold storage, controlled atmosphere (CA) and modified atmosphere packaging (MAP) have been applied to alter the produce’s internal and external environment, decreasing its metabolic activity and extending shelf-life. Both CA and MAP have benefitted from technological innovation. Respiratory quotient control has improved the management of conventional and recently developed CA systems; gas scavengers have made MAP more efficient; and the inclusion of natural additives has enhanced food safety across the supply chain. This paper critically reviews the application of new postharvest techniques to manipulate gaseous environments and highlights areas that require further study.
Fast pyrolysis for liquids has been developed in recent decades as a fast and flexible method to provide high yields of liquid products. An overview of this promising field is given, with a comprehensive introduction as well as a practical guide to those thinking of applying bio-oils or fast pyrolysis liquids in various applications. It updates the literature with recent developments that have occurred since the reviews cited herein. Part I gave an introduction to the background, science, feedstocks, technology and products available for fast pyrolysis (1). Part II details some of the promising applications as well as pre-treatment and bio-oil upgrading options. The applications include use of bio-oil as an energy carrier, precursor to second generation biofuels, as a biorefinery concept and upgrading to fuels and chemicals.
The expansion of unconventional oil and gas development has placed a new emphasis on better understanding well performance. The cost of horizontal and stimulated wells is higher than of conventional wells and requires reservoir professionals to look to new technologies to ensure optimal return on drilling, completion and stimulation. Using tracers allows the user to pinpoint stages of the well that are successfully producing, thereby saving costs by eliminating unproductive areas. Tracerco provides unique technologies for this purpose; this article explains how the tracers are applied and presents a case study illustrating their use.
1. Introduction The European Union (EU) has invested heavily in palladium membrane technology, as reflected by numerous multi-million Euro research projects funded over the last decades. As a result, many research groups in Europe, both from academia and research institutes, have been leading the development of Pd membrane technology targeting hydrogen production, carbon capture and other...
Shale gas has received much attention in recent years particularly in the USA and in Europe. It is a useful fuel source but also comes with the attendant risks and challenges associated with maximising the useful extraction of fuel, minimising costs and also protecting the environment. Its constituent component is essentially methane, the same as any other source of natural gas and it is...
Ventilation air methane (VAM) found in coal mines is a huge and global problem because it acts as a greenhouse gas (GHG) contributing to climate change. Methods for removing this methane and reducing its impact have to date been limited due to a lack of legislative drivers and a technological focus on reducing the emissions of higher hydrocarbons. Now a new technology, known as COMETTM, has been developed at Johnson Matthey in collaboration with Anglo Coal for abating this methane emission source. This article describes the development of the catalytic system and its engineering aspects to the point where the technology is ready for commercial launch.
John M. Woodley is a Professor of Chemical Engineering at the Department of Chemical and Biochemical Engineering at the Technical University of Denmark (DTU). Originally from the UK, his research focuses on the relatively new field of bioreaction engineering, using chemical engineering to design and implement the next generation of chemical processes with enzymatic and microbial catalysts....
Steam reforming of methane is a vital unit operation in the manufacture of synthesis gas (or syngas). Johnson Matthey Process Technologies is a leader in reforming technology for the industrial production of hydrogen, methanol and ammonia to the chemicals and oil and gas sectors. Many of the key innovations in the development of the early reformers and catalysts have taken place in Billingham, UK (Figure 1) by ICI Agricultural Division and later Johnson Matthey Process Technologies. This paper explores the history of the site at which industrial reforming technology was established in 1936 and recounts the technological milestones of the engineers’ work on catalysts, reformer design and operation since that time.
Introduction “Membrane Technologies for Water Treatment: Removal of Toxic Trace elements with Emphasis on Arsenic, Fluoride and Uranium” is the first volume of a book series entitled Sustainable Water Developments – Resources, Management, Treatment, Efficiency and Reuse. The book presents chapters on a wide range of membrane technologies that have been used to remove toxic trace elements...
As part of a process loop to make acrylic acid from propane, catalysts for two reactions have been investigated. Mo/Bi based mixed metal oxides for selective oxidation of propylene in a propane feed have been prepared by a sol-gel method which increased activity over the standard catalyst. Modifications of the molecular formula led to an increase in selectivity towards acrolein whilst maintaining the improved conversion. X-ray diffraction (XRD) analysis showed the sol-gel method helped incorporate the various mixed metal oxides and prevented segregation during reaction conditions. A Pd-loaded 4A zeolite membrane catalyst was developed on the surface of 1 mm beads γ-Al2O3 support. The membrane was employed in the selective oxidation of CO in a propane-rich mixture. The zeolite coating was developed by using a new modification of the hydrothermal synthesis (dilution method). Catalytic test results confirmed that the selective oxidation of CO in the presence of propane is possible by using a 4A zeolite membrane coated on a Pd based catalyst. Temperature and time during zeolite preparation are key parameters in the stability and reproducibility of the zeolite membrane. The seeding method improves the growth of the zeolite on the catalyst surface and does not affect the stability and reproducibility of catalyst. By using this catalyst it is possible to get a temperature window for the selective oxidation of CO (65°C).
Introduction This new volume of Springer's famous series Topics in Organometallic Chemistry, Volume 42, entitled “Organometallics as Catalysts in the Fine Chemical Industry”, presents the state-of-the-art in the industrial use of organometallic or coordination complexes as catalysts for the production of fine chemicals. A range of reactions is covered through an overview of chapters and...
The majority of books and reviews on any area of technology development tend to focus on information published in the journal literature; reviews of the patent literature are more often confined to the prior art sections of patent documents. However, patents remain one of the best sources of detailed technical information, particularly where the invention may have commercial significance,...
Introduction When choosing a reformer catalyst, there are a number of important things to consider. Steam reforming of methane is an endothermic reversible reaction, whilst steam reforming of higher hydrocarbons is not reversible. The activity of the catalyst installed is critical in determining the reaction rate within the reformer. However, the steam reforming reaction is diffusion...
Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network and decentralised units to supply fuelling stations, the chemical industry or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, while centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.