Flame is a natural phenomenon and is a basic element of any combustion process. The majority of flames consist of a gas; there is, however, a small amount of ionisation occurring in the flame. Despite the increased focus on combustion-free energy production such as wind, air and water power, and the refocus on nuclear energy now considered to be carbon-free, nonetheless combustion will remain, for the next few decades, the major energy and heat production route worldwide. Apart from carbon dioxide, which is commonly considered to be the major pollutant, there are other gases like nitric oxide and nitrogen dioxide which, although found in significantly lower amounts in the exhaust gases from combustion units, still present a large environmental impact and are a concern. There are however well-established technologies for removing combustion products from the exhaust gas, and the combustion process can in general be made CO2 and environmentally neutral. Combustion optimisation is a route for further reduction of undesirable byproducts, fuel consumption minimisation and finally an overall energy and heat production enhancement. The key parameter in any combustion process is reliable flame and (post-) combustion gas temperature measurement and control. Various combustion environments such as waste incineration, internal combustion engines or solids explosions cause the appearance of various optical emission features in different spectral ranges not accessible to the human eye. A combination of modern and newly developed fast spectral optical techniques with extensive theoretical developments in spectral and heat radiative transfer modelling allows us to obtain detailed snapshots of what is happening in the combustion process. That also gives a possibility to establish a direct link to the industrial process control and pollutant emission reduction. In this article some examples of in situ flame and gas temperature measurements in various combustion environments and advanced spectral modelling are given and perspectives for further commercial instrumentation developments are discussed.
Temperature is the most frequently measured process variable in almost all industrial sectors from the chemical industry to glass and ceramics, refrigeration and power generation. During many manufacturing processes, continuous temperature control is an important part of product quality assurance and a matter of avoiding malfunctions or detecting them at an early stage. Measuring points can be located at different places such as in containers, pipe systems, machines, ovens or reactors, whereby different gaseous, liquid or solid media, for instance, steam, water, oil or special chemical substances may be involved. In view of these extremely complex tasks, flexibility is one of the most important requirements for measurement technology and signal processing. And this is where thermocouples, which can be adapted to almost all measuring tasks due to their simple design, become relevant. The basic design and operating principle of thermocouples are described in this paper; issues relating to calibration, traceability and measurement uncertainty are addressed. Recent developments to improve temperature measurement with thermocouples are presented. New, drift-optimised thermocouples, novel designs and alternative calibration methods are described, and their advantages over conventional thermocouples or calibration methods are specified.
Measurement and control of process temperature is key to maximising product quality, optimising efficiency, reducing waste, safety and minimising carbon dioxide and other harmful emissions. Drift of temperature sensor calibration due to environmental factors such as high temperature, vibration, contamination and ionising radiation results in a progressively worsening temperature measurement error, which in turn results in suboptimal processes. Here we outline some new developments to overcome sensor calibration drift and so provide assured temperature measurement in process, including self-validating thermocouples, embedded temperature reference standards, and practical primary Johnson noise thermometry where the temperature is measured directly without the need for any calibration. These new developments will give measurement assurance by either providing measurements which are inherently stable, or by providing an in situ calibration facility to enable the detection and correction of calibration drift.
In May 2019 four of the seven base units of the International System of Units (the SI) were redefined and are now founded on defined values of fundamental physical constants. One of these was the kelvin which is no longer defined by the triple point of water but instead through a fixed value of the Boltzmann constant. In this paper the kelvin redefinition is introduced and the implications for temperature traceability and practical temperature sensing discussed. This will include outlining new approaches for temperature traceability, as well as discussing the rise of in-process calibration through practical primary temperature sensing approaches (where, in principle, no sensor calibration is required). These forthcoming changes are likely to have significant impact on everyone in the temperature calibration chain, whilst the advent of in-process temperature calibration should lead to step change improvements in process control, energy efficiency and product quality consistency and will help facilitate autonomous production.
Since the mid-1970s when the ‘Low Pressure Oxo’ process (LP OxoSM Process) was first commercialised, it has maintained its global position as the foremost oxo process, offering particular appeal to independent producers of commodity plasticisers facing increasing regulatory pressure. The story of this important industrial process is told from its early beginnings when laboratory discoveries by independent groups of researchers in USA and UK revealed the remarkable ability of organophosphine containing rhodium compounds to catalyse the hydroformylation reaction, and describes how its development, exploitation and continuing industrial relevance came about by collaboration between three companies: The Power-Gas Corporation, which later became Davy Process Technology before becoming part of Johnson Matthey; Union Carbide Corporation, which became a wholly owned subsidiary of The Dow Chemical Company; and Johnson Matthey.
Industries face mounting challenges in the paradigm shift to a more circular economy. Research and development is increasingly focused on finding ways to turn waste into resources, recover energy and materials and make better use of resources extracted from the natural environment. At the same time industry and consumers seek to cause less harm in the form of pollution or CO2 emissions. In...
The manufacturing industry must diverge from a ‘take, make and waste’ linear production paradigm towards more circular economies. Truly sustainable, circular economies are intrinsically tied to renewable resource flows, where vast quantities need to be available at a central point of consumption. Abundant, renewable carbon feedstocks are often structurally complex and recalcitrant, requiring costly pretreatment to harness their potential fully. As such, the heat integration of supercritical water gasification (SCWG) and aerobic gas fermentation unlocks the promise of renewable feedstocks such as lignin. This study models the technoeconomics and life cycle assessment (LCA) for the sustainable production of the commodity chemicals, isopropanol and acetone, from gasified Kraft black liquor. The investment case is underpinned by rigorous process modelling informed by published continuous gas fermentation experimental data. Time series analyses support the price forecasts for the solvent products. Furthermore, a Monte Carlo simulation frames an uncertain boundary for the technoeconomic model. The technoeconomic assessment (TEA) demonstrates that production of commodity chemicals priced at ~US$1000 per tonne is within reach of aerobic gas fermentation. In addition, owing to the sequestration of biogenic carbon into the solvent products, negative greenhouse gas (GHG) emissions are achieved within a cradle-to-gate LCA framework. As such, the heat integrated aerobic gas fermentation platform has promise as a best-in-class technology for the production of a broad spectrum of renewable commodity chemicals.
A sustained global effort is required over the next few decades to reduce greenhouse gas emissions, in order to address global warming as society seeks to deliver the Paris Agreement temperature goals. The increasing availability of renewable electricity will reduce our reliance on fossil fuels. However, some applications, such as long-haul aviation, are particularly challenging to decarbonise. The conversion of waste, biomass or existing CO2 emissions into sustainable fuels via Fischer-Tropsch (FT) synthesis offers one solution to this problem. This paper describes some of the challenges associated with this route to these alternative fuels and how Johnson Matthey and bp have solved them.
There is a growing move away from so called first generation biorenewables (which use food crops as the feedstock) towards second generation biorenewables which use non-food sources of biomass. Biorenewable products have the potential to support growing resource needs while addressing concerns regarding climate change and energy security. Examples of second generation biorenewable...
Sustainability has been one of the main issues in the world in recent years. The decrease of resources in the world, along with the growing world population and the resulting environmental waste, present a fairly significant problem. As an alternative solution to this problem, insects are put forward as an ideal resource. Due to the enzymes and microorganisms in their intestinal microbiota, the biotransformation processes of insects are capable of converting wastes, organic materials and residues into valuable products that can be used for various industrial applications such as pharmaceuticals, cosmetics and functional foods. Some species of insects are in an advantageous position because of the simplicity of their lifecycle, the ease of their production and their ability to feed on organic materials to make valuable products. From a sustainability perspective, utilisation of the microorganisms or enzymes isolated from these microorganisms available in the microbiota of insects may allow novel insect-based biotransformation processes that promise a more sustainable world and novel green technologies.
Microbubbles are famed for their large surface area-to-volume ratio, with the promise of intensification of interfacial phenomena, highlighted by more rapid gas exchange. However, for bioprocessing, it has been recognised for many decades that surfactant-rich fermentation media hinders mass transfer and possibly other interfacial processes due to surfactant loading on the interface. This article focuses on the roles of microbubble size and bubble bank, dispersed microbubbles that are sufficiently small to be non-buoyant, in mediating other modes of interfacial transfer via collisions with microorganisms and self-assembled clusters of microorganisms and microbubbles. These provide a more direct route of mass transfer for product gases that can be released directly to the microbubble with ~104 faster diffusion rates than liquid mediated gas exchange. Furthermore, secreted external metabolites with amphoteric character are absorbed along the microbubble interface, providing a faster route for liquid solute transport than diffusion through the boundary layer. These mechanisms can be exploited by the emerging fields of symbiotic or microbiome engineering to design self-assembled artificial lichen dispersed structures that can serve as a scaffold for the selected constituents. Additionally, such designed scaffolds can be tuned, along with the controllable parameters of microbubble mediated flotation separations or hot microbubble stripping for simultaneous or in situ product removal. Staging the product removal thus has benefits of decreasing the inhibitory effect of secreted external metabolites on the microorganism that produced them. Evidence supporting these hypotheses are produced from reviewing the literature. In particular, recent work in co-cultures of yeast and microalgae in the presence of a dispersed bubble bank, as well as anaerobic digestion (AD) intensification with dispersed, seeded microbubbles, is presented to support these proposed artificial lichen clusters.
This study aims to investigate the interactions between collagen and tanning processes performed by ecol-tan®, phosphonium, EasyWhite Tan®, glutaraldehyde, formaldehyde-free replacement synthetic tannin (syntan), condensed (mimosa) and hydrolysed (tara) vegetable tanning agents as alternatives to conventional basic chromium sulfate, widely used in the leather industry. Collagen stabilisation with tanning agents was determined by comparative thermal analysis methods: differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and conventional shrinkage temperature (Ts) measurement. Analysis techniques and tanning agents were compared and bonding characteristics were ranked by the thermal stabilisation they provided. Chromium tanning agent was also compared with the alternative tanning systems. The results provide a different perspective than the conventional view to provide a better understanding of the relationship between tanning and thermal stability of leather materials.
Introduction “Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing” is authored by Ian Gibson, David Rosen and Brent Stucker, who collectively possess 60 years’ experience in the field of additive manufacturing (AM). This is the second edition of the book which aims to include current developments and innovations in a rapidly changing field....
The supply chain for metal powders used in additive manufacturing (AM) is currently experiencing exponential growth and with this growth come new powder suppliers, new powder manufacturing methods and increased competition. The high number of potential supply chain options provides AM service providers with a significant challenge when making decisions on powder procurement. This paper provides an overview of the metal powder supply chain for the AM market and aims to give AM service providers the information necessary to make informed decisions when procuring metal powders. The procurement options are categorised into three main groups, namely: procuring powders from AM equipment suppliers, procuring powders from third party suppliers and procuring powders directly from powder atomisers. Each of the procurement options has its own unique advantages and disadvantages. The relative importance of these will depend on what the AM equipment is being used for, for example research, rapid prototyping or productionisation. The future of the metal AM powder market is also discussed.
Sensors are vital to process and product control across a large number of industries. A network of sensors is used for monitoring and controlling machinery, systems and processes in chemicals, pharmaceuticals, biotechnology, energy, water, wastewater, oil, gas, plastic, paper, food and beverages among others. Technologies for Sensing The technologies are as varied as the applications....
Oil fields harbour a wide variety of microorganisms with different metabolic capabilities. To examine the microbial ecology of petroleum reservoirs, a molecular-based approach was used to assess the composition of bacterial communities in produced water of Diyarbakır oil fields in Turkey. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments was performed to characterise the bacterial community structure of produced water samples and to identify predominant community members after sequencing of separated DGGE bands. The majority of bacterial sequences retrieved from DGGE analysis of produced water samples belonged to unclassified bacteria (50%). Among the classified bacteria, Proteobacteria (29.2%), Firmicutes (8.3%), Bacteroidetes (8.3%) and Actinobacteria (4.2%) groups were identified. Pseudomonas was the dominant genus detected in the produced water samples. The results of this research provide, for the first time, insight into the complexity of microbial communities in the Diyarbakır oil reservoirs and their dominant constituents.
Edward Rosenberg is a Professor of Chemistry at the University of Montana, USA. His research interests are in the areas of the applications of composite materials for metal ion removal, separation and concentration from aqueous systems. About the Researcher Name: Edward Rosenberg Position: Professor Department: Chemistry and Biochemistry University: University of Montana Street: 32 Campus...
Introduction “Heavy Metals in Water: Presence, Removal and Safety” is published by the Royal Society of Chemistry and consists of 16 independent chapters. The chapters can be broadly divided into two groups: those covering the techniques and processes used to deal with heavy metal pollution and those discussing a particular pollutant or pollution problem. The chapters are divided...
Salt contains extremely halophilic archaea and these microorganisms degrade leather quality. The aim of this study is to find an effective treatment system to kill these microorganisms in salt used in hide brine curing. Ten salt samples were obtained from Tuz Lake, Turkey, and the total cell counts of extremely halophilic archaea, proteolytic and lipolytic extremely halophilic archaea were determined. Two sets of experiments were designed to detect the inactivation impact of alternating electric current on extremely halophilic archaea. In the first experiment, 2 A alternating electric current was applied for 25 min to the salt samples dissolved in liquid medium. In the second experiment, 2 A alternating electric current was applied for 25 min to the isolates of proteolytic extremely halophilic archaea, lipolytic extremely halophilic archaea, both proteolytic and lipolytic extremely halophilic archaea, and a mixed culture of these isolates. The extremely halophilic archaea in salt (102–104 colony forming units (CFU) g–1) was annihilated in 1 min via alternating electric current and a 5 min treatment with the current was enough to destroy extremely halophilic archaeal isolates (106 CFU ml–1) obtained from salt samples. This electric treatment was found fairly effective to kill proteolytic and lipolytic extremely halophilic archaea in salt used for preservation of hide.