This review briefly describes the vacuum electrostatic levitation furnace developed by JAXA and the associated non-contact techniques used to measure the density, the surface tension and the viscosity of materials. The paper then presents a summary of the data taken with this facility in the equilibrium liquid and non-equilibrium liquid phases for the six platinum group metals (pgms): platinum, palladium, rhodium, iridium, ruthenium and osmium over wide temperature ranges that include undercooled and superheated phases. The presented data (density, surface tension and viscosity of Pt, Rh, Ir, Ru and Os and density of Pd) are compared with literature values.
Electrical resistivity values for both the solid and liquid phases of the platinum group metals (pgms) palladium and platinum are evaluated. In particular improved values are obtained for the liquid phases of these metals. Previous reviews on electrical resistivity which included evaluations for the pgms included those of Meaden (1), Bass (2), Savitskii et al. (3) and Binkele and Brunen (4) as well as individual reviews by Matula (5) on palladium and White (6) on platinum.
Iridium as a barrier coating is an important area of high-temperature application. In Part I, the introduction was presented and the different deposition processes were reviewed (1). This paper, Part II, describes the texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment are also investigated in some detail.
In the century since the first platinum gauze for nitric acid production was made by Johnson Matthey, the demand for nitric acid has increased considerably with its vast number of applications: from fertiliser production to mining explosives and gold extraction. Throughout the significant changes in the industry over the past 100 years, there has been continual development in Johnson Matthey’s gauze technology to meet the changing needs of customers: improving efficiency, increasing campaign length, reducing metal losses and reducing harmful nitrous oxide emissions. This article reviews the progress in gauze development over the past century and looks at recent developments.