In this paper, changes in the mechanical properties of Pd-5Ni alloy are analysed after recrystallisation annealing in order to determine the optimal conditions for a thermomechanical processing regime for this alloy. The temperature and annealing time were varied and the resulting changes in hardness, tensile strength, relative elongation and proof strength were monitored. By using the simplex-lattice method and analysing experimental data, a fourth degree mathematical model-regression polynomial was defined and isolines of changes in the mechanical properties of the investigated alloys were designed depending on the conditions of heat treatment after rolling.
The use of various sintering technologies, allied to suitable powder metallurgy, has long been the subject of discussion within the global jewellery manufacturing community. This exciting, once theoretical and experimental technology is now undoubtedly a practical application suitable for the jewellery industry. All parts of the jewellery industry supply and value chains, and especially design and manufacturing, now need to become aware very quickly of just how unsettling and disruptive this technology introduction has the potential to become. This paper will offer various viewpoints that consider not only the technology and its application to jewellery manufacture but will also consider the new design potentials of the technology to the jewellery industry. It will also briefly consider how that design potential is being taught to future generations of jewellery designers at the Birmingham School of Jewellery. We shall also discuss in some detail the economics of and potential for new and different business models that this technological paradigm might offer the jewellery industry.
The changes in phase state, electrical properties and microhardness of copper-55 at% palladium alloy samples with different initial states (as-quenched and deformed via severe plastic deformation (SPD)) were studied during isothermal annealing. Ordered B2-phase formation in the disordered (A1) matrix was found to occur at a significantly higher temperature than is indicated in the generally accepted phase diagram of the Cu-Pd system. Corresponding electrical resistivity is also lower than reported elsewhere for alloys of similar compositions, at ρ = (27.67 ± 0.04) × 10–8 Ωm, making this the lowest resistivity yet reported for a Cu-Pd alloy with 55 at% Pd.
We review developments in the study of the stability of platinum-iridium standard weights, in particular the kilogram prototypes manufactured from alloy supplied by Johnson Matthey in the 1880s that still stand at the heart of the International System of Units (abbreviated SI from the French: Système international d’unités). The SI has long since moved on from length standards based on physical artefacts fabricated from this alloy, but the SI unit of mass is still defined in this way, as the mass of a real physical object. The stability of these reference masses has been a concern since the 1930s, with mass loss or gain at the surface being the principal concern. In recent years X-ray photoelectron spectroscopy (XPS) has been particularly valuable in elucidating the types of contamination present and the mechanism by which contamination takes place. While direct studies on the International Prototype Kilogram are understandably difficult, at Newcastle University we have examined the surfaces of six Pt mass standards also manufactured in the mid-19th century, using XPS to identify contamination chemically. XPS shows a significant quantity of mercury on the surfaces of all six. The most likely source of Hg vapour is the accidental breakage of thermometers and barometers, and the mechanism of contamination may be similar to the poisoning of platinum group metal (pgm) catalysts by Hg, an effect known for almost a century.