“Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications” is edited by Rachid Yazami and is published by Pan Stanford Publishing Pte Ltd. The book covers the latest developments in new materials for lithium-ion batteries including examples of novel alloys, oxides and conversion materials for use as anodes and phosphates, high voltage spinels and layered oxides for use as cathodes. Composite structures incorporating reduced graphene oxide are considered along with thin films and nanowires. Emphasis is also placed on combining electrochemical test data with materials characterisation and detailed explanation of the mechanisms occurring.
Angel Cuesta is a Senior Lecturer at the University of Aberdeen, UK. His research is of interest in the field of materials for electrochemical applications and focuses on combining classical electrochemical techniques, in situ vibrational and optical spectroscopy and in situ scanning probe microscopy to obtain as detailed a description as possible, at the molecular level, of the...
Palladium based membranes are widely used for supplying ultra-high purity hydrogen to a polymer electrolyte fuel cell (PEFC) installed on small vehicles and various electronic devices. Compared to pressure swing adsorption (PSA), the use of palladium based membrane is more economical for small size (small capacity) applications. The transportation of hydrogen through a palladium based membrane is governed by Sieverts’ Law and quantified with Fick’s First Law. Since the 20th century, the fabrication of high-performance palladium based membrane for enhanced hydrogen recovery performance has become practical. However, along with the improvement in hydrogen recovery performance, concentration polarisation becomes unavoidable because hydrogen permeation flux starts to affect hydrogen concentration at the membrane surface. Various parametric studies have investigated the effects of membrane thickness, hydrogen molar fraction and total upstream and downstream pressures on concentration polarisation level. The influence of membrane temperature, permeability, type and number of species in the hydrogen mixture, diffusivity of the hydrogen mixture, system configurations and flow patterns are also reported and comprehensively reviewed in this paper. Part II will complete the presentation.
This article completes the presentation of various techniques reducing concentration polarisation in palladium based membranes for supplying ultra-high purity hydrogen to a polymer electrolyte fuel cell (PEFC), such as the implementation of baffles and the use of microchannel configuration. The present paper also reviews and reports the current methods for estimating hydrogen permeation flux under concentration polarisation influence, which will be a useful guide for academics and industrial practitioners.
Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of iridium-nickel film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms (LSV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results show that iridium-nickel thin films were attached to the substrate of porous structure and hollow topography. The deposition of nickel was preferable in the electrolyte without the addition of additives, and the iridium-nickel thin film was alloyed, resulting in a high deposition rate for Ir42Ni58 thin film, and subsequently an increase of iridium content in the thin films of Ir80Ni20 and Ir88Ni12. Iridium-nickel thin films with Tafel slopes of 40–49 mV dec–1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of iridium-nickel thin films showed a loading dependence. As the solution temperature increased from 20°C to 60°C, the hydrogen evolution performance of iridium-nickel thin films improved. The apparent activation energy value of Ir88Ni12 film was 7.1 kJ mol–1. Long-term hydrogen evolution tests exhibited excellent electrocatalytic stability in alkaline solution.
Lithium Sulfur: Mechanism, Modelling and Materials (Li-SM3) was organised by Oxis Energy Ltd, UK, Imperial College London, UK, and the Joint Center for Energy Storage Research (JCESR), USA. It was held at the Institution of Engineering and Technology (IET), Savoy Place, London from 26th–27th April 2017. More than 150 researchers from around the world attended this event, 44 of them...
Proteolytic and lipolytic extremely halophilic archaea found in curing salt may contaminate skins during the brine curing process and damage skin structure. In the present study, three proteolytic and lipolytic extremely halophilic archaea were isolated from deteriorated salted sheepskins and characterised using conventional and molecular methods. Each test strain (Haloarcula salaria AT1, Halobacterium salinarum 22T6, Haloarcula tradensis 7T3), a mixed culture of these strains and the mixed culture treated with 1.5 A direct current (DC) were used for brine curing processes of fresh sheepskins and examined during 47 days of storage to evaluate the degree of destruction wreaked by these microorganisms. Both organoleptic properties and scanning electron microscopy (SEM) images of sheepskins proved that each separate test strain and the mixed culture caused serious damage. However, the mixed culture of strains treated with electric current did not damage sheepskin structure. Therefore, we highly recommend sterilisation of brine using DC to prevent archaeal damage on cured hides and skins in the leather industry.
Introduction A select group of researchers are profiled here, all of whom are involved in the design and characterisation of materials for electrochemical energy storage and conversion devices. These include a broad range of battery types, fuel cells, supercapacitors, photovoltaics and devices for the production, storage and utilisation of hydrogen. Many are pioneering the use of advanced...
With the electric vehicle (EV) market set to grow rapidly over the coming years, the industry faces a challenging ramp-up of volume and material performance demands. From the current trend towards high-energy high-nickel cathode materials, driven in-part by consumer range anxiety, to the emergence of solid-state and beyond lithium-ion technologies, herein we review the changing requirements for active materials in automotive Li-ion battery (LIB) applications, and how science and industry are set to respond.
The market for hydrogen fuel cell vehicles (FCVs) continues to grow worldwide. At present, early adopters rely on a sparse refuelling infrastructure, and there is only limited knowledge about how they evaluate the geographic arrangement of stations when they decide to get an FCV, which is an important consideration for facilitating widespread FCV diffusion. To address this, we conducted several related studies based on surveys and interviews of early FCV adopters in California, USA, and a participatory geodesign workshop with hydrogen infrastructure planning stakeholders in Connecticut, USA. From this mixed-methods research project, we distil 15 high-level findings for planning hydrogen station infrastructure to encourage FCV adoption.
Portable electronic devices, electric vehicles and stationary energy storage applications, which encourage carbon-neutral energy alternatives, are driving demand for batteries that have concurrently higher energy densities, faster charging rates, safer operation and lower prices. These demands can no longer be met by incrementally improving existing technologies but require the discovery of new materials with exceptional properties. Experimental materials discovery is both expensive and time consuming: before the efficacy of a new battery material can be assessed, its synthesis and stability must be well-understood. Computational materials modelling can expedite this process by predicting novel materials, both in stand-alone theoretical calculations and in tandem with experiments. In this review, we describe a materials discovery framework based on density functional theory (DFT) to predict the properties of electrode and solid-electrolyte materials and validate these predictions experimentally. First, we discuss crystal structure prediction using the ab initio random structure searching (AIRSS) method. Next, we describe how DFT results allow us to predict which phases form during electrode cycling, as well as the electrode voltage profile and maximum theoretical capacity. We go on to explain how DFT can be used to simulate experimentally measurable properties such as nuclear magnetic resonance (NMR) spectra and ionic conductivities. We illustrate the described workflow with multiple experimentally validated examples: materials for lithium-ion and sodium-ion anodes and lithium-ion solid electrolytes. These examples highlight the power of combining computation with experiment to advance battery materials research.
Introduction The Americas International Meeting on Electrochemistry and Solid State Science was a joint international conference of the 234th Meeting of The Electrochemical Society (ECS), the XXXIII Congreso de la Sociedad Mexicana de Electroquimica (SMEQ) and the 11th Meeting of the Mexico Section of the Electrochemical Society. It was well attended with worldwide representation including...
Despite considerable research efforts, finding a chemically stable electrolyte mixture in the presence of reduced oxygen species remains a great challenge. Previously, dimethyl sulfoxide (DMSO) and sulfolane (tetramethylene sulfone (TMS))-based electrolytes were reported to be stable for lithium air (Li-O2) battery applications. Recently lithium hydroxide (LiOH) based chemistries have been demonstrated to involve supressed side reactions in water-added ether- and DMSO-based electrolytes. Herein, we investigate the impact of DMSO-based electrolyte and sulfolane co-solvent on cell chemistry in the presence of water. We found that DMSO-based electrolyte leads to formation of a peroxide-hydroxide mixture as discharge products and the removal of both LiOH and lithium peroxide (Li2O2) on charging from 3.2–3.6 V (vs. Li+/Li) is observed. In the presence of sulfolane as co-solvent, a mixture of Li2O2 and LiOH is formed as major discharge products with slightly more LiOH formation than in the absence of sulfolane. The presence of sulfolane has also significant effects on the charging behaviour, exhibiting a clearer 3 e−/O2 oxygen evolution reaction profile during the entire charging process. This work provides insights into understanding the effects of the primary solvent on promoting LiOH formation and decomposition in lithium iodide (LiI) mediated non-aqueous Li-O2 batteries.
The status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H2 purity requirements and ease the transition from H2 derived from natural gas to H2 produced from water and renewable energy sources.
Introduction The 21st International Conference on Solid State Ionics (SSI-21) was held in Padova, Italy, from 18th to 23rd June, 2017. The conference saw ~1300 people attend over the six days, covering four macro areas: energy and environment communication and robotics biological systems and life sciences fundamental theory. The energy and environment macro area saw 30 topics including:...
Introduction The Eighth International Flow Battery Forum, organised by Swanbarton Ltd, UK, focused on industrial applications of redox flow batteries (RFB). The conference was held from 27th to 29th June 2017 at the Mercure Piccadilly Hotel, Manchester, UK. It was attended by 212 delegates from all over the world, including flow battery developers, material and component suppliers and...
All-solid-state batteries, which utilise a solid electrolyte in place of liquid electrolytes, have the potential for higher energy densities and greater safety than current lithium-ion batteries. However they still face many challenges before the technology is ready to be commercialised. This short report summarises the current state of knowledge in all-solid-state batteries including the electrical, electrochemical and mechanical properties of the electrolytes, and the challenges that remain to be overcome in their development and processing.
The second workshop on “Durability and Degradation Issues in PEM Electrolysis Cells and its Components” was held at Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg, Germany, from 16th–17th February 2016. The workshop was organised as part of the European Union (EU)-funded 7th Framework Programme, NOVEL, of which project Johnson Matthey Fuel Cells is a partner, along with...
“Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors” is a comprehensive textbook covering materials, applications and prospects of the aforementioned devices. The high level overview provided makes this book an excellent resource for readers new to electrochemical devices as it avoids going into excessive detail of each material, whilst providing an overall...
It may surprise some readers to see an edition of this journal dedicated largely to lithium-ion batteries, but this is a technology that Johnson Matthey considers a major new business area for the company. Johnson Matthey has been involved in research and development (R&D) in the battery materials space for several years and launched its commercial business operations in the sector in...