1. Introduction Within the last 20 years, publication numbers in the field of lithium battery research have increased from a few hundred in the mid 1990s to more than 4500 publications in 2013 (Figure 1). It has grown to a major research topic, with many universities, state laboratories and commercial research and development (R&D) facilities involved. The number of meetings dedicated to...
Following the development of commercial secondary lithium-ion batteries (LIBs), this article illustrates the progress of therein-utilised anode materials from the first successful commercialisation to recent research activities. First, early scientific achievements and industrial developments in the field of LIBs, which enabled the remarkable evolution within the last 20 years of this class of batteries, are reviewed. Afterwards, the characteristics of state-of-the-art commercially available anode materials are highlighted with a particular focus on their lithium storage mechanism. Finally, a new class of anode active materials exhibiting a different storage mechanism, namely combined conversion and alloying, is described, which might successfully address the challenges and issues LIB anodes are currently facing.
Bismuth vanadate (BiVO4) is proven to be a promising photocatalyst for water splitting. However, the effect of materials syntheses, electrode preparation and size of photoelectrode on the photocurrent output of BiVO4 photoanodes needs further investigations. In this study, three different BiVO4 nanoparticle synthesis were employed, namely hydrothermal (HT), HT in the presence of ethylene glycol (EG) and HT with the addition of hydrazine hydrate (HH). In addition, two molecular inks (Triton-X and ethyl‐methyl‐imidazole, EMI), were compared for the preparation of BiVO4 photoanodes using a simple doctor-blade technique followed by calcination at 450°C. The photoanodes (9 cm2 active surface) were then compared for their photocurrent density at AM1.5G illumination and 1.2 V (vs . standard hydrogen electrode (SHE)) bias in a specifically designed, three-dimensional (3D)-printed electrochemical cell. The highest photocurrent 0.13 ± 0.1 mA cm–2 was obtained with the EMI ink, whereas tenfold lower photocurrent was obtained with Triton-X due to the higher charge transfer resistance, measured by electric impedance spectroscopy (EIS). The photoresponse was reproducible and relatively stable, with only 8% decrease in five consecutive illumination periods of 1 min.
We review recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). These are used in membrane electrode assemblies (MEAs) in devices such as electrolysers, for water splitting to generate hydrogen as fuel, and in fuel cells where they provide a buffer against carbon corrosion. In these situations, proton exchange membrane (PEM) layers are used, and highly acid-resilient electrocatalyst materials are required. The range of structure types investigated includes perovskites, pyrochlores and hexagonal perovskite-like phases, where the pgm is partnered by base metals in complex chemical compositions. The role of chemical synthesis in the discovery of new oxide compositions is emphasised, particularly to yield powders for processing into MEAs. Part I introduces the electrocatalytic splitting of water to oxygen and hydrogen and provides a survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis.