Definitive equations are suggested to represent the variation with temperature of the densities and molar volumes of the liquid platinum group metals whilst the previously unknown initial slopes of the melting curves for iridium, rhodium and ruthenium are estimated. 1. Introduction Paradis et al. (1) summarised determinations of the densities of the liquid platinum group metals but a...
Iridium as a barrier coating is an important area of high-temperature application. In Part I, the introduction was presented and the different deposition processes were reviewed (1). This paper, Part II, describes the texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment are also investigated in some detail.
The successful use in rocket engines of iridium as a barrier coating is an important area of high-temperature application. The Ir coating must be continuous and dense in order to protect the underlying material from corrosion and oxidation. The microstructure and morphology of the coating can be effectively controlled by varying the deposition conditions. The microstructure has an important influence on the physical and mechanical properties of the coating. A number of deposition processes, which have different conditions and requirements, have been employed to produce Ir coatings on various substrate materials. Part I of this paper presents the introduction and reviews the different deposition processes, while Part II will deal with texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment will also be investigated in some detail.
Barring the presence of significant amounts of impurities, an important cause of thermoelectric inhomogeneity and therefore calibration drift of platinum-rhodium thermocouples at high temperatures is the vaporisation and transport of the oxides of Pt and Rh, which causes local changes in wire composition. By examining the vapour pressures of Pt and Rh oxides and their temperature dependence, it is shown that at a given temperature there is an optimal wire composition at which evaporation of the oxides has no effect on the wire composition, provided the vapour does not leave the vicinity of the wire. This may also have applications for Pt-Rh heater elements.
Anisotropic and average intrinsic electrical resistivity measurements of ruthenium were evaluated from 10 K to 1600 K and average values above this temperature up to the melting point. For osmium average values were evaluated from 30 K to 273.15 K and anisotropic and average values above this temperature and up to 1600 K.
Electrical resistivity values for both the solid and liquid phases of the platinum group metals (pgms) rhodium and iridium are evaluated. In particular improved values are obtained for the liquid phases of these metals.
In the 2012 review (1) the isotope 209Pt was included based on a claim to its discovery by Kurcewiz et al. which was reported in a preprint (2). However when the actual paper was published (3) it was considered that the evidence for 209Pt was unsatisfactory and it was no longer included. Therefore the number of known isotopes for platinum has been amended in Table I. In addition one...
In this paper, changes in the mechanical properties of Pd-5Ni alloy are analysed after recrystallisation annealing in order to determine the optimal conditions for a thermomechanical processing regime for this alloy. The temperature and annealing time were varied and the resulting changes in hardness, tensile strength, relative elongation and proof strength were monitored. By using the simplex-lattice method and analysing experimental data, a fourth degree mathematical model-regression polynomial was defined and isolines of changes in the mechanical properties of the investigated alloys were designed depending on the conditions of heat treatment after rolling.
Electrical resistivity values for both the solid and liquid phases of the platinum group metals (pgms) palladium and platinum are evaluated. In particular improved values are obtained for the liquid phases of these metals. Previous reviews on electrical resistivity which included evaluations for the pgms included those of Meaden (1), Bass (2), Savitskii et al. (3) and Binkele and Brunen (4) as well as individual reviews by Matula (5) on palladium and White (6) on platinum.
The use of various sintering technologies, allied to suitable powder metallurgy, has long been the subject of discussion within the global jewellery manufacturing community. This exciting, once theoretical and experimental technology is now undoubtedly a practical application suitable for the jewellery industry. All parts of the jewellery industry supply and value chains, and especially design and manufacturing, now need to become aware very quickly of just how unsettling and disruptive this technology introduction has the potential to become. This paper will offer various viewpoints that consider not only the technology and its application to jewellery manufacture but will also consider the new design potentials of the technology to the jewellery industry. It will also briefly consider how that design potential is being taught to future generations of jewellery designers at the Birmingham School of Jewellery. We shall also discuss in some detail the economics of and potential for new and different business models that this technological paradigm might offer the jewellery industry.
We review developments in the study of the stability of platinum-iridium standard weights, in particular the kilogram prototypes manufactured from alloy supplied by Johnson Matthey in the 1880s that still stand at the heart of the International System of Units (abbreviated SI from the French: Système international d’unités). The SI has long since moved on from length standards based on physical artefacts fabricated from this alloy, but the SI unit of mass is still defined in this way, as the mass of a real physical object. The stability of these reference masses has been a concern since the 1930s, with mass loss or gain at the surface being the principal concern. In recent years X-ray photoelectron spectroscopy (XPS) has been particularly valuable in elucidating the types of contamination present and the mechanism by which contamination takes place. While direct studies on the International Prototype Kilogram are understandably difficult, at Newcastle University we have examined the surfaces of six Pt mass standards also manufactured in the mid-19th century, using XPS to identify contamination chemically. XPS shows a significant quantity of mercury on the surfaces of all six. The most likely source of Hg vapour is the accidental breakage of thermometers and barometers, and the mechanism of contamination may be similar to the poisoning of platinum group metal (pgm) catalysts by Hg, an effect known for almost a century.
The 28th annual Santa Fe Symposium® was held from 18th–21st May 2014 in Albuquerque, New Mexico, USA, and attracted another large attendance of delegates from 15 countries worldwide, representing a good cross-section of those involved in jewellery manufacturing from mass manufacture to specialised craft operations. In general, many were finding the market is tougher now than a few years...
The changes in phase state, electrical properties and microhardness of copper-55 at% palladium alloy samples with different initial states (as-quenched and deformed via severe plastic deformation (SPD)) were studied during isothermal annealing. Ordered B2-phase formation in the disordered (A1) matrix was found to occur at a significantly higher temperature than is indicated in the generally accepted phase diagram of the Cu-Pd system. Corresponding electrical resistivity is also lower than reported elsewhere for alloys of similar compositions, at ρ = (27.67 ± 0.04) × 10–8 Ωm, making this the lowest resistivity yet reported for a Cu-Pd alloy with 55 at% Pd.
This review briefly describes the vacuum electrostatic levitation furnace developed by JAXA and the associated non-contact techniques used to measure the density, the surface tension and the viscosity of materials. The paper then presents a summary of the data taken with this facility in the equilibrium liquid and non-equilibrium liquid phases for the six platinum group metals (pgms): platinum, palladium, rhodium, iridium, ruthenium and osmium over wide temperature ranges that include undercooled and superheated phases. The presented data (density, surface tension and viscosity of Pt, Rh, Ir, Ru and Os and density of Pd) are compared with literature values.
Having established that osmium is the densest metal at room temperature the question arises as to whether it is always the densest metal. It is shown here that at ambient pressure osmium is the densest metal at all temperatures, although there is an ambiguity below 150 K. At room temperature iridium becomes the densest metal above a pressure of 2.98 GPa, at which point the densities of the two metals are equal at 22,750 kg m–3.
Titanium-platinum (Ti50Pt50) (all compositions in at%) alloy exhibits thermoelastic martensitic phase transformation above 1000°C and has potential for high-temperature shape memory material applications. However, as has been previously reported, Ti50Pt50 alloy exhibited a negligible recovery ratio (0–11%) and low strength in martensite and especially in the austenite phase due to low critical stress for slip deformation. In order to improve the high-temperature strength and shape memory properties, the effects of partial substitution of Ti with other Group 4 elements such as zirconium and hafnium and the effect of partial substitution of Pt with other platinum group metals (pgms) such as iridium and ruthenium on the high-temperature mechanical and shape memory properties of Ti50Pt50 alloy were recently investigated. This paper reviews the transformation temperatures and high-temperature mechanical and shape memory properties of recently developed Ti site substituted (Ti,Zr)50Pt50, (Ti,Hf)50Pt50 and Pt site substituted Ti50(Pt,Ru)50 and Ti50(Pt,Ir)50 alloys for high-temperature (~800°C–1100°C) material applications.