This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C2+) products. The major goals for the field are to increase Faradaic efficiency (FE) for specific C2+ products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers (GDLs) on the catalyst microenvironment and subsequent performance.
Bismuth vanadate (BiVO4) is proven to be a promising photocatalyst for water splitting. However, the effect of materials syntheses, electrode preparation and size of photoelectrode on the photocurrent output of BiVO4 photoanodes needs further investigations. In this study, three different BiVO4 nanoparticle synthesis were employed, namely hydrothermal (HT), HT in the presence of ethylene glycol (EG) and HT with the addition of hydrazine hydrate (HH). In addition, two molecular inks (Triton-X and ethyl‐methyl‐imidazole, EMI), were compared for the preparation of BiVO4 photoanodes using a simple doctor-blade technique followed by calcination at 450°C. The photoanodes (9 cm2 active surface) were then compared for their photocurrent density at AM1.5G illumination and 1.2 V (vs . standard hydrogen electrode (SHE)) bias in a specifically designed, three-dimensional (3D)-printed electrochemical cell. The highest photocurrent 0.13 ± 0.1 mA cm–2 was obtained with the EMI ink, whereas tenfold lower photocurrent was obtained with Triton-X due to the higher charge transfer resistance, measured by electric impedance spectroscopy (EIS). The photoresponse was reproducible and relatively stable, with only 8% decrease in five consecutive illumination periods of 1 min.
We review recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). These are used in membrane electrode assemblies (MEAs) in devices such as electrolysers, for water splitting to generate hydrogen as fuel, and in fuel cells where they provide a buffer against carbon corrosion. In these situations, proton exchange membrane (PEM) layers are used, and highly acid-resilient electrocatalyst materials are required. The range of structure types investigated includes perovskites, pyrochlores and hexagonal perovskite-like phases, where the pgm is partnered by base metals in complex chemical compositions. The role of chemical synthesis in the discovery of new oxide compositions is emphasised, particularly to yield powders for processing into MEAs. Part I introduces the electrocatalytic splitting of water to oxygen and hydrogen and provides a survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis.
We continue our review of recent research into oxides of platinum group metals (pgms), in particular those of ruthenium and iridium, for use as electrocatalysts for the oxygen evolution reaction (OER). In Part I (1), the electrocatalytic splitting of water to oxygen and hydrogen was introduced as a key process in developing future devices for various energy-related applications. A survey of ruthenium and iridium oxide structures for oxygen evolution reaction catalysis was presented. Part II discusses mechanistic details and acid stability of pgm oxides and presents the conclusions and outlook. We highlight emerging work that shows how leaching of the base metals from the multinary compositions occurs during operation to yield active pgm-oxide phases, and how attempts to correlate stability with crystal structure have been made. Implications of these discoveries for the balance of activity and stability needed for effective electrocatalysis in real devices are discussed.
Traditional microbial synthesis of chemicals and fuels often rely on energy-rich feedstocks such as glucose, raising ethical concerns as they are directly competing with the food supply. Therefore, it is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or vice versa, by harnessing the metabolic processes of bacteria to valorise a range of waste products, including greenhouse gases (GHGs). However, the strict growth and nutrient requirements of industrially relevant bacteria, combined with low efficiencies of native extracellular electron transfer (EET) mechanisms, reduce the potential for industrial scalability. In this two-part work, we review the most significant advancements in techniques aimed at improving and modulating the efficiency of microbial EET, giving an objective and balanced view of current controversies surrounding the physiology of microbial electron transfer, alongside the methods used to wire microbial redox centres with the electrodes of bioelectrochemical systems via conductive nanomaterials.
It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or vice versa by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.
In recent years, sodium-ion batteries (NIBs) have been explored as an alternative technology to lithium-ion batteries (LIBs) due to their cost-effectiveness and promise in mitigating the energy crisis we currently face. Similarities between both battery systems have enabled fast development of NIBs, however, their full commercialisation has been delayed due to the lack of an appropriate anode material. Hard carbons (HCs) arise as one of the most promising materials and are already used in the first generation of commercial NIBs. Although promising, HCs exhibit lower performance compared to commercial graphite used as an anode in LIBs in terms of reversible specific capacity, operating voltage, initial coulombic efficiency and cycling stability. Nevertheless, these properties vary greatly depending on the HC in question, for example surface area, porosity, degree of graphitisation and defect amount, which in turn are dependent on the synthesis method and precursor used. Optimisation of these properties will bring forward the widespread commercialisation of NIBs at a competitive level with current LIBs. This review aims to provide a brief overview of the current understanding of the underlying reaction mechanisms occurring in the state-of-the-art HC anode material as well as their structure-property interdependence. We expect to bring new insights into the engineering of HC materials to achieve optimal, or at least, comparable electrochemical performance to that of graphite in LIBs.
To combat the global problem of carbon dioxide emissions, hydrogen is the desired energy vector for the transition to environmentally benign fuel cell power. Water electrolysis (WE) is the major technology for sustainable hydrogen production. Despite the use of renewable solar and wind power as sources of electricity, one of the main barriers for the widespread implementation of WE is the scarcity and high cost of platinum group metals (pgms) that are used to catalyse the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Hence, the critical pgm-based catalysts must be replaced with more sustainable alternatives for WE technologies to become commercially viable. This critical review describes the state-of-the-art pgm-free materials used in the WE application, with a major focus on phosphides and borides. Several emerging classes of HER and OER catalysts are reviewed and detailed structure–property correlations are comprehensively summarised. The influence of the crystallographic and electronic structures, morphology and bulk and surface chemistry of the catalysts on the activity towards OER and HER is discussed.
Palladium based membranes are widely used for supplying ultra-high purity hydrogen to a polymer electrolyte fuel cell (PEFC) installed on small vehicles and various electronic devices. Compared to pressure swing adsorption (PSA), the use of palladium based membrane is more economical for small size (small capacity) applications. The transportation of hydrogen through a palladium based membrane is governed by Sieverts’ Law and quantified with Fick’s First Law. Since the 20th century, the fabrication of high-performance palladium based membrane for enhanced hydrogen recovery performance has become practical. However, along with the improvement in hydrogen recovery performance, concentration polarisation becomes unavoidable because hydrogen permeation flux starts to affect hydrogen concentration at the membrane surface. Various parametric studies have investigated the effects of membrane thickness, hydrogen molar fraction and total upstream and downstream pressures on concentration polarisation level. The influence of membrane temperature, permeability, type and number of species in the hydrogen mixture, diffusivity of the hydrogen mixture, system configurations and flow patterns are also reported and comprehensively reviewed in this paper. Part II will complete the presentation.
This article completes the presentation of various techniques reducing concentration polarisation in palladium based membranes for supplying ultra-high purity hydrogen to a polymer electrolyte fuel cell (PEFC), such as the implementation of baffles and the use of microchannel configuration. The present paper also reviews and reports the current methods for estimating hydrogen permeation flux under concentration polarisation influence, which will be a useful guide for academics and industrial practitioners.
Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of iridium-nickel film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms (LSV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results show that iridium-nickel thin films were attached to the substrate of porous structure and hollow topography. The deposition of nickel was preferable in the electrolyte without the addition of additives, and the iridium-nickel thin film was alloyed, resulting in a high deposition rate for Ir42Ni58 thin film, and subsequently an increase of iridium content in the thin films of Ir80Ni20 and Ir88Ni12. Iridium-nickel thin films with Tafel slopes of 40–49 mV dec–1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of iridium-nickel thin films showed a loading dependence. As the solution temperature increased from 20°C to 60°C, the hydrogen evolution performance of iridium-nickel thin films improved. The apparent activation energy value of Ir88Ni12 film was 7.1 kJ mol–1. Long-term hydrogen evolution tests exhibited excellent electrocatalytic stability in alkaline solution.
Proteolytic and lipolytic extremely halophilic archaea found in curing salt may contaminate skins during the brine curing process and damage skin structure. In the present study, three proteolytic and lipolytic extremely halophilic archaea were isolated from deteriorated salted sheepskins and characterised using conventional and molecular methods. Each test strain (Haloarcula salaria AT1, Halobacterium salinarum 22T6, Haloarcula tradensis 7T3), a mixed culture of these strains and the mixed culture treated with 1.5 A direct current (DC) were used for brine curing processes of fresh sheepskins and examined during 47 days of storage to evaluate the degree of destruction wreaked by these microorganisms. Both organoleptic properties and scanning electron microscopy (SEM) images of sheepskins proved that each separate test strain and the mixed culture caused serious damage. However, the mixed culture of strains treated with electric current did not damage sheepskin structure. Therefore, we highly recommend sterilisation of brine using DC to prevent archaeal damage on cured hides and skins in the leather industry.
To date, the world has been making a massive shift away from fossil fuels towards cleaner energy sources. For the past decade, polymer electrolyte membrane fuel cells (PEMFCs) powered by hydrogen have attracted much attention as a promising candidate for eco-friendly vehicles, i.e. fuel cell electric vehicles (FCEVs), owing to their high power density, high efficiency and zero emission features. Since the world’s first mass production of Tucson ix35 FCEV by Hyundai in 2013, global automotive original equipment manufacturers (OEMs) have focused on commercialising FCEVs. In 2018, Hyundai also unveiled the second generation of the mass-produced FCEV (i.e. Nexo) with improved performances and durability compared with its predecessor. Since then, the global market for PEMFCs for a variety of FCEV applications has been growing very rapidly in terms of both passenger vehicles and medium- and heavy-duty vehicles such as buses and trucks, which require much higher durability than passenger vehicles, i.e. 5000 h for passenger vehicles vs. 25,000 h for heavy-duty vehicles. In addition, PEMFCs are also in demand for other applications including fuel cell electric trains, trams, forklifts, power generators and vessels. We herein present recent advances in how hydrogen and PEMFCs will power the future in a wide range of applications and address key challenges to be resolved in the future.
The market for hydrogen fuel cell vehicles (FCVs) continues to grow worldwide. At present, early adopters rely on a sparse refuelling infrastructure, and there is only limited knowledge about how they evaluate the geographic arrangement of stations when they decide to get an FCV, which is an important consideration for facilitating widespread FCV diffusion. To address this, we conducted several related studies based on surveys and interviews of early FCV adopters in California, USA, and a participatory geodesign workshop with hydrogen infrastructure planning stakeholders in Connecticut, USA. From this mixed-methods research project, we distil 15 high-level findings for planning hydrogen station infrastructure to encourage FCV adoption.
With the electric vehicle (EV) market set to grow rapidly over the coming years, the industry faces a challenging ramp-up of volume and material performance demands. From the current trend towards high-energy high-nickel cathode materials, driven in-part by consumer range anxiety, to the emergence of solid-state and beyond lithium-ion technologies, herein we review the changing requirements for active materials in automotive Li-ion battery (LIB) applications, and how science and industry are set to respond.
Portable electronic devices, electric vehicles and stationary energy storage applications, which encourage carbon-neutral energy alternatives, are driving demand for batteries that have concurrently higher energy densities, faster charging rates, safer operation and lower prices. These demands can no longer be met by incrementally improving existing technologies but require the discovery of new materials with exceptional properties. Experimental materials discovery is both expensive and time consuming: before the efficacy of a new battery material can be assessed, its synthesis and stability must be well-understood. Computational materials modelling can expedite this process by predicting novel materials, both in stand-alone theoretical calculations and in tandem with experiments. In this review, we describe a materials discovery framework based on density functional theory (DFT) to predict the properties of electrode and solid-electrolyte materials and validate these predictions experimentally. First, we discuss crystal structure prediction using the ab initio random structure searching (AIRSS) method. Next, we describe how DFT results allow us to predict which phases form during electrode cycling, as well as the electrode voltage profile and maximum theoretical capacity. We go on to explain how DFT can be used to simulate experimentally measurable properties such as nuclear magnetic resonance (NMR) spectra and ionic conductivities. We illustrate the described workflow with multiple experimentally validated examples: materials for lithium-ion and sodium-ion anodes and lithium-ion solid electrolytes. These examples highlight the power of combining computation with experiment to advance battery materials research.
Introduction A select group of researchers are profiled here, all of whom are involved in the design and characterisation of materials for electrochemical energy storage and conversion devices. These include a broad range of battery types, fuel cells, supercapacitors, photovoltaics and devices for the production, storage and utilisation of hydrogen. Many are pioneering the use of advanced...
Electrochemistry studies on the derivatives of graphene have been in the forefront of chemical research in recent years. The large specific surface area, high electrical conductivity, fast electron transfer rate and excellent biocompatibility to biomolecules constitute a few of the underlying reasons for the extensive application of graphene derivatives in modern electrochemistry and related technologies. Much interest in graphene derivatives has been driven by the ease of intentional functionalisation of the carbon backbone of graphene with dopants, such as nitrogen. Doping enhances the electrical conductivity and biocompatibility of nitrogen-doped graphene (NGr) nanomaterials and aids in their potential applications in electrochemical sensing and spectroelectrochemical devices. Despite the application of NGr in electrochemical sensing devices, the major challenge for reproducible industrial application still lies in the use of surfactants and binders and the limited knowledge on the correlation between the N-configurations and the electrocatalytic performance of these NGr-based electrodes. Therefore, the purpose of this short review article is to highlight some recent progress on the application of NGr derivatives for electrochemical detection of biomarkers such as uric acid and dopamine. The paper will also illustrate design parameters for new surfactant-free two-dimensional (2D) N-doped graphene based electrochemical sensors with variable N-functionalities for the detection of dopamine and uric acid.
Introduction The Americas International Meeting on Electrochemistry and Solid State Science was a joint international conference of the 234th Meeting of The Electrochemical Society (ECS), the XXXIII Congreso de la Sociedad Mexicana de Electroquimica (SMEQ) and the 11th Meeting of the Mexico Section of the Electrochemical Society. It was well attended with worldwide representation including...
Despite considerable research efforts, finding a chemically stable electrolyte mixture in the presence of reduced oxygen species remains a great challenge. Previously, dimethyl sulfoxide (DMSO) and sulfolane (tetramethylene sulfone (TMS))-based electrolytes were reported to be stable for lithium air (Li-O2) battery applications. Recently lithium hydroxide (LiOH) based chemistries have been demonstrated to involve supressed side reactions in water-added ether- and DMSO-based electrolytes. Herein, we investigate the impact of DMSO-based electrolyte and sulfolane co-solvent on cell chemistry in the presence of water. We found that DMSO-based electrolyte leads to formation of a peroxide-hydroxide mixture as discharge products and the removal of both LiOH and lithium peroxide (Li2O2) on charging from 3.2–3.6 V (vs. Li+/Li) is observed. In the presence of sulfolane as co-solvent, a mixture of Li2O2 and LiOH is formed as major discharge products with slightly more LiOH formation than in the absence of sulfolane. The presence of sulfolane has also significant effects on the charging behaviour, exhibiting a clearer 3 e−/O2 oxygen evolution reaction profile during the entire charging process. This work provides insights into understanding the effects of the primary solvent on promoting LiOH formation and decomposition in lithium iodide (LiI) mediated non-aqueous Li-O2 batteries.