Historically, Johnson Matthey has had a long association with electrochemistry, and perhaps this was inevitable because of the importance of the platinum group metals (pgm) to Johnson Matthey’s early development. Platinum, in particular, has been incredibly useful in the field, because of its exceptional electrocatalytic activity and impressive inertness in most environments. Famously,...
Rechargeable metal-oxygen cells could exceed the stored energy of today’s most advanced lithium-ion cells. However challenges exist that must be overcome to bring this technology into practical application. These challenges include, among others, the recharge and cyclability efficiency, materials development and improvements in fundamental understanding of the electrochemistry and chemistry inside the cell. The common challenges for the anode, including corrosion, passivation and dendrite formation and those for the air cathode and the electrolyte are summarised in this review for cells based on magnesium, calcium, aluminium, silicon, zinc and iron.
All-solid-state batteries, which utilise a solid electrolyte in place of liquid electrolytes, have the potential for higher energy densities and greater safety than current lithium-ion batteries. However they still face many challenges before the technology is ready to be commercialised. This short report summarises the current state of knowledge in all-solid-state batteries including the electrical, electrochemical and mechanical properties of the electrolytes, and the challenges that remain to be overcome in their development and processing.
Introduction “Electrochemistry: Volume 14” is a collated book of five papers edited by Craig Banks (Manchester Metropolitan University, UK) and Steven McIntosh (Lehigh University, Bethlehem PA, USA), both of whom are well established in the field with research interests covering the topics in the book. The book is one of a series which aims to collate and summarise the key topics receiving...
Introduction The Eighth International Flow Battery Forum, organised by Swanbarton Ltd, UK, focused on industrial applications of redox flow batteries (RFB). The conference was held from 27th to 29th June 2017 at the Mercure Piccadilly Hotel, Manchester, UK. It was attended by 212 delegates from all over the world, including flow battery developers, material and component suppliers and...
Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for H7PV4Mo8O40 and Na4H3PV4Mo8O40, two promising polyoxometalate (POM)-based catholytes. The results suggest 80°C and a catholyte concentration of 0.3 M provide the optimum performance for both H7PV4Mo8O40 and Na4H3PV4Mo8O40 (for ambient pressure operation).
Introduction The 21st International Conference on Solid State Ionics (SSI-21) was held in Padova, Italy, from 18th to 23rd June, 2017. The conference saw ~1300 people attend over the six days, covering four macro areas: energy and environment communication and robotics biological systems and life sciences fundamental theory. The energy and environment macro area saw 30 topics including:...
The status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H2 purity requirements and ease the transition from H2 derived from natural gas to H2 produced from water and renewable energy sources.
Introduction The Royal Society of Chemistry Faraday Discussions are a series of meetings focusing on rapidly developing areas of physical chemistry. Contrary to typical conferences, Faraday Discussions rely on the active participation of speakers and audience alike. Topics for each session are based on new research papers submitted specifically for the meeting. Audience participation is...
Lithium Sulfur: Mechanism, Modelling and Materials (Li-SM3) was organised by Oxis Energy Ltd, UK, Imperial College London, UK, and the Joint Center for Energy Storage Research (JCESR), USA. It was held at the Institution of Engineering and Technology (IET), Savoy Place, London from 26th–27th April 2017. More than 150 researchers from around the world attended this event, 44 of them...
Introduction The third UK Energy Storage Conference (UKES2016) was held at the Edgbaston campus of the University of Birmingham, UK, from midday on Wednesday 30th November to midday on Friday 2nd December 2016. The aim of the conference, organised by the Energy Storage Research Network on behalf of the UK Research Council funded Energy SuperStore Hub and chaired by Professor Nigel Brandon...
The second workshop on “Durability and Degradation Issues in PEM Electrolysis Cells and its Components” was held at Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg, Germany, from 16th–17th February 2016. The workshop was organised as part of the European Union (EU)-funded 7th Framework Programme, NOVEL, of which project Johnson Matthey Fuel Cells is a partner, along with...
“Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors” is a comprehensive textbook covering materials, applications and prospects of the aforementioned devices. The high level overview provided makes this book an excellent resource for readers new to electrochemical devices as it avoids going into excessive detail of each material, whilst providing an overall...
The Ulm Electrochemical Talks are held annually in Ulm, Germany. The 14th meeting, held from 23rd–26th June, 2014, focused on the topic of “Next Generation Electrochemical Energy Technologies”. Fuel cells and batteries are described as the dominant technologies to deliver the e-mobility vision within the next few decades. This selective review will focus on battery technologies and supercapacitors; although there was also plenty of material on the equally important topic of fuel cells which is not covered here.
It may surprise some readers to see an edition of this journal dedicated largely to lithium-ion batteries, but this is a technology that Johnson Matthey considers a major new business area for the company. Johnson Matthey has been involved in research and development (R&D) in the battery materials space for several years and launched its commercial business operations in the sector in...
Recently lithium-ion batteries have started to be used in a number of automotive passenger car applications. This paper will review these applications and compare the requirements of the applications with the capabilities of the lithium-ion chemistries that are actually being used. The gaps between these requirements and capabilities will be highlighted and future developments that may be able to fill these gaps will be discussed. It is concluded that while improvements to the lithium-ion cell chemistry will help reduce the weight of battery packs for electric vehicle applications the largest weight gains will come from the pack design.
“Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications” is edited by Rachid Yazami and is published by Pan Stanford Publishing Pte Ltd. The book covers the latest developments in new materials for lithium-ion batteries including examples of novel alloys, oxides and conversion materials for use as anodes and phosphates, high voltage spinels and layered oxides for use as cathodes. Composite structures incorporating reduced graphene oxide are considered along with thin films and nanowires. Emphasis is also placed on combining electrochemical test data with materials characterisation and detailed explanation of the mechanisms occurring.
“Electrolytes for Lithium and Lithium-Ion Batteries”, published in 2014 by Springer, is Volume 58 in the Modern Aspects of Electrochemistry series. The volume is edited by T. Richard Jow, Kang Xu, Oleg Borodin and Makoto Ue. In the preface the Editors set out their purpose in compiling this volume, which was to provide a comprehensive overview of electrolytes for lithium-ion batteries. It covers electrolyte research and development in the last ten years and may be used as a foundation for future work and directions. The volume succeeds in covering the multifaceted area of electrolytes in a logical and highly comprehensive manner.
Chapter topics include lithium salts, advances in solvents, additives and ionic liquids, then progressing to understanding of the cathode and anode interphases, reviewing various characterisation approaches, a discussion of modelling approaches and finally future technologies such as lithium air batteries.
Following the development of commercial secondary lithium-ion batteries (LIBs), this article illustrates the progress of therein-utilised anode materials from the first successful commercialisation to recent research activities. First, early scientific achievements and industrial developments in the field of LIBs, which enabled the remarkable evolution within the last 20 years of this class of batteries, are reviewed. Afterwards, the characteristics of state-of-the-art commercially available anode materials are highlighted with a particular focus on their lithium storage mechanism. Finally, a new class of anode active materials exhibiting a different storage mechanism, namely combined conversion and alloying, is described, which might successfully address the challenges and issues LIB anodes are currently facing.
1. Introduction Within the last 20 years, publication numbers in the field of lithium battery research have increased from a few hundred in the mid 1990s to more than 4500 publications in 2013 (Figure 1). It has grown to a major research topic, with many universities, state laboratories and commercial research and development (R&D) facilities involved. The number of meetings dedicated to...