This first part of a two-part commemoration of the life and work of Robert D. Gillard begins with a biographical outline which provides a context for his chemical achievements. He was awarded a State Scholarship and after his National Service in the Royal Air Force he went up to St Edmund Hall, Oxford, to read Chemistry. There follows a chronological account of his career in Chemistry starting with his undergraduate days in Oxford, where a Part II project with Dr Harry Irving on alkaline earth and cobalt complexes proved seminal. His PhD research at Imperial College, London in the Geoffrey Wilkinson group broadened his experience into the then poorly developed chemistry of rhodium and other platinum group metal complexes. Gillard next went to Sheffield University as a Lecturer where he developed independent research while continuing to work on earlier topics. There followed a move to Canterbury as a Reader at the University of Kent. In his particularly productive seven years there with a large research group he widened his experience further, expanding his interests in such areas as the optical properties of transition metal complexes, considering biological and medical relevance, and increasing the range of metals and ligands he investigated. His subsequent time at Cardiff and then into retirement will be covered in the second part of this commemoration.
The second part of this commemoration covers the final stage of Robert Gillard’s career as Professor of Inorganic Chemistry at Cardiff University and his time in retirement. At Cardiff he built on earlier work while extending his scientific interests still further into mineralogical and archaeological chemistry, and even into forensic dentistry. Coordination chemistry research continued and included the polysulfide S5 chain as a bidentate ligand in the all-inorganic cyclic PtS5 unit and the rhodium(III) complex [Rh(S5)3]3–. His penchant for discussion led him into several controversies, particularly over his ‘covalent hydration’ hypothesis of coordinated nitrogen-carbon double bonds in metal complexes which included those with platinum and 2,2’-bipyridine. He travelled widely attending international conferences and giving lectures. Research collaborations continued throughout his time at Cardiff and in particular he had many strong links with Portugal, both with colleagues there and as supervisor of Portuguese higher degree students at Cardiff. His years in retirement were spent in finalising his research legacy, in continuing to read historical literature, both chemical and otherwise, and in following his musical interests that had included many years singing in the Cwmbach Male Voice Choir.
“Make possible the loyal execution of any honest order” Numa Droz, Member of Swiss Parliament and Federal Councillor (1877) Precious metals are subject to great scrutiny from lawmakers because of their financial and strategic importance. Gold and silver coins have been hallmarked since ancient times but the platinum group metals (pgm) were only known from 1748, therefore their hallmarking...
In the 2014 review (1) discovery circumstances for 85Ru and 86Ru were referenced only in the form of a preprint but have now been reported in the open literature (2). For the most recently discovered isotopes the discovery years for both 128Rh and 90Pd are the manuscript dates of the given references whilst for 125Ru, 130Pd and 131Pd the common discovery year corresponds to the original...
Global methanol production in 2016 was around 85 million metric tonnes (1), enough to fill an Olympic-sized swimming pool every twelve minutes. And if all the global production capacity were in full use, it would only take eight minutes. The vast majority of the produced methanol undergoes at least one further chemical transformation, more likely two or three before being turned into a final product. Methanol is one of the first building blocks in a wide variety of synthetic materials that make up many modern products and is also used as a fuel and a fuel additive. This paper looks at the last 100 years or so of the industrial history of methanol production.
In the century since the first platinum gauze for nitric acid production was made by Johnson Matthey, the demand for nitric acid has increased considerably with its vast number of applications: from fertiliser production to mining explosives and gold extraction. Throughout the significant changes in the industry over the past 100 years, there has been continual development in Johnson Matthey’s gauze technology to meet the changing needs of customers: improving efficiency, increasing campaign length, reducing metal losses and reducing harmful nitrous oxide emissions. This article reviews the progress in gauze development over the past century and looks at recent developments.
This paper reviews the use and relation of the word ‘ptène’ to osmium. While Smithson Tennant discovered osmium in platinum ore in 1804, the French chemists Antoine-François Fourcroy and Nicolas-Louis Vauquelin simultaneously identified in a platinum residue a metal they called ‘ptène’. This name was most probably attributed to a mixture of platinoids (excluding platinum), mainly osmium and iridium. Nevertheless, Fourcroy later considered that ‘ptène’ was the name they attributed to osmium.
The story of the first 200 years of Johnson Matthey is told. The firm was started in 1817 by Percival Johnson, but in 1851 George Matthey became a partner and the present name was derived from these two partners. A number of milestones in its illustrious history are reviewed, and some of the current activities of the company are brought up to date, in this short article. Introduction...
In the 2012 review (1) the isotope 209Pt was included based on a claim to its discovery by Kurcewiz et al. which was reported in a preprint (2). However when the actual paper was published (3) it was considered that the evidence for 209Pt was unsatisfactory and it was no longer included. Therefore the number of known isotopes for platinum has been amended in Table I. In addition one...
In the twentieth century Dennis Albert Dowden, affectionately referred to as DAD by friends and colleagues, was an important figure in the development of an understanding of the structure of industrial heterogeneous catalysts, the species present and the processes taking place on them. He was born in Bristol, UK, and following education at the University of Bristol and a short period at Amherst College in the USA, in 1938 he joined Imperial Chemical Industries (ICI) at Billingham in the North East of England. He worked there on catalysis, catalyst manufacture and catalytic processes for the next thirty-seven years. His major contribution was to bring a wide range of sciences and a rational approach into what had been until then regarded as “black art”, capable of only empirical analysis. His influence extended across ICI, which at that time operated many industrial catalytic processes, and academically he was influential worldwide and especially in the USA.
Introduction A commemorative symposium was held at the University of Durham, UK, on 3rd–4th April 2013 to celebrate the career of Professor Dennis Albert Dowden (1914–2012). The meeting was organised by the Royal Society of Chemistry (RSC) Applied Catalysis Group (ACG) and the RSC Surface Reactivity and Catalysis Group (SURCAT) and sponsored by Johnson Matthey. The meeting was attended by...