- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 55, Issue 2, 2011
Platinum Metals Review - Volume 55, Issue 2, 2011
Volume 55, Issue 2, 2011
-
-
Microstructure Analysis of Selected Platinum Alloys
More LessMetallographic analysis can be used to determine the microstructure of platinum alloys in order to set up working cycles and to perform failure analyses. A range of platinum alloys used in jewellery and industrial applications was studied, including several commonly used jewellery alloys. Electrochemical etching was used to prepare samples for analysis using optical metallography and additional data could be obtained by scanning electron microscopy and energy dispersive spectroscopy. The crystallisation behaviour of as-cast alloy samples and the changes in microstructure after work hardening and annealing are described for the selected alloys.
-
-
-
The 2010 Nobel Prize in Chemistry: Palladium-Catalysed Cross-Coupling
More LessThe 2010 Nobel Prize in Chemistry was awarded jointly to Professor Richard F. Heck (University of Delaware, USA), Professor Ei-ichi Negishi (Purdue University, USA) and Professor Akira Suzuki (Hokkaido University, Japan) for their work on palladium-catalysed cross-coupling in organic synthesis. This article presents a brief history of the development of the protocols for palladium-catalysed coupling in the context of Heck, Negishi and Suzuki coupling. Further developments in the area of palladium-catalysed cross-coupling are also briefly discussed, and the importance of these reactions for real world applications is highlighted.
-
-
-
A Healthy Future: Platinum in Medical Applications
Authors: By Alison Cowley and and Brian Woodward*The world’s growing population demands increasing access to advanced healthcare treatments. Platinum is used to make essential components for a range of medical devices, including pacemakers, implantable defibrillators, catheters, stents and neuromodulation devices. The properties of platinum which make it suitable for medical device applications include its bio-compatibility, inertness within the body, durability, electrical conductivity and radiopacity. Components can be manufactured in a variety of forms, from rod, wire and ribbon to sheet and foil, plus high-precision micromachined parts. As well as biomedical device components, platinum also finds use in anticancer drugs such as cisplatin and carboplatin.
-
-
-
The Discoverers of the Rhodium Isotopes
More LessThis is the fifth in a series of reviews on the circumstances surrounding the discoveries of the isotopes of the six platinum group elements. The first review on platinum isotopes was published in this Journal in October 2000 (1), the second on iridium isotopes in October 2003 (2), the third on osmium isotopes in October 2004 (3) and the fourth on palladium isotopes in April 2006 (4).
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)