Skip to content
1887
Volume 56, Issue 2
  • ISSN: 0032-1400

Abstract

Loading

Article metrics loading...

/content/journals/10.1595/147106712X632415
2012-01-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/pmr/56/2/PMR-56-2-Cookson.html?itemId=/content/journals/10.1595/147106712X632415&mimeType=html&fmt=ahah

References

  1. A. Moores, F. Goettmann, New J. Chem., 2006, 30, (8), 1121 [Google Scholar]
  2. M.-C. Daniel, D. Astruc, Chem. Rev., 2004, 104, (1), 293 [Google Scholar]
  3. J. D. Aiken III, R. G. Finke, J. Mol. Catal. A, 1999, 145, (1–2), 143 [Google Scholar]
  4. D. Astruc, Inorg. Chem., 2007, 46, (6), 1884 [Google Scholar]
  5. A. T. Bell, Science, 2003, 299, (5613), 1688 [Google Scholar]
  6. N. Semagina, A. Renken, L. Kiwi-Minsker, J. Phys. Chem. C, 2007, 111, (37), 13933 [Google Scholar]
  7. O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez, R. M. Crooks, J. Am. Chem. Soc., 2006, 128, (14), 4510 [Google Scholar]
  8. N. Dimitratos, F. Porta, L. Prati, Appl. Catal. A: Gen., 2005, 291, (1–2), 210 [Google Scholar]
  9. Z. Hou, N. Theyssen, A. Brinkmann, W. Leitner, Angew. Chem. Int. Ed., 2005, 44, (9), 1346 [Google Scholar]
  10. M. Beller, H. Fischer, K. Kühlein, C.-P. Reisinger, W. A. Herrmann, J. Organomet. Chem., 1996, 520, (1–2), 257 [Google Scholar]
  11. R. Narayanan, M. A. El-Sayed, J. Catal., 2005, 234, (2), 348 [Google Scholar]
  12. S. Cheong, J. D. Watt, R. D. Tilley, Nanoscale, 2010, 2, (10), 2045 [Google Scholar]
  13. S. Horinouchi, Y. Yamanoi, T. Yonezawa, T. Mouri, H. Nishihara, Langmuir, 2006, 22, (4), 1880 [Google Scholar]
  14. M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C, 2008, 112, (9), 3294 [Google Scholar]
  15. S. Mubeen, T. Zhang, B. Yoo, M. A. Deshusses, N. V. Myung, J. Phys. Chem. C, 2007, 111, (17), 6321 [Google Scholar]
  16. P. Tobiška, O. Hugon, A. Trouillet, H. Gagnaire, Sens. Actuators B: Chem., 2001, 74, (1–3), 168 [Google Scholar]
  17. Y. Xiong, Y. Xia, Adv. Mater., 2007, 19, (20), 3385 [Google Scholar]
  18. B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, Y. Xia, Adv. Funct. Mater., 2009, 19, (2), 189 [Google Scholar]
  19. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun., 1994, (7), 801 [Google Scholar]
  20. B. P. S. Chauhan, J. S. Rathore, T. Bandoo, J. Am. Chem. Soc., 2004, 126, (27), 8493 [Google Scholar]
  21. S.-Y. Lee, M. Yamada, M. Miyake, Sci. Technol. Adv. Mater., 2005, 6, (5), 420 [Google Scholar]
  22. F. Lu, J. Ruiz, D. Astruc, Tetrahedron Lett., 2004, 45, (51), 9443 [Google Scholar]
  23. J. Alvarez, J. Liu, E. Román, A. E. Kaifer, Chem. Commun., 2000, (13), 1151 [Google Scholar]
  24. S. Chen, K. Huang, J. A. Stearns, Chem. Mater., 2000, 12, (2), 540 [Google Scholar]
  25. E. Sadeghmoghaddam, C. Lam, D. Choi, Y.-S. Shon, J. Mater. Chem., 2011, 21, (2), 307 [Google Scholar]
  26. I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara, H. Nishihara, Langmuir, 2002, 18, (4), 1413 [Google Scholar]
  27. T. Yonezawa, K. Imamura, N. Kimizuka, Langmuir, 2001, 17, (16), 4701 [Google Scholar]
  28. F. Dassenoy, K. Philippot, T. O. Ely, C. Armiens, P. Lecante, E. Snoeck, A. Mosset, M.-J. Casanove, B. Chaudret, New J. Chem., 1998, (7), 703 [Google Scholar]
  29. T. Teranishi, M. Miyake, Chem. Mater., 1998, 10, (2), 594 [Google Scholar]
  30. C. K. Yee, R. Jordan, A. Ulman, H. White, A. King, M. Rafailovich, J. Sokolov, Langmuir, 1999, 15, (10), 3486 [Google Scholar]
  31. D. E. Cliffel, F. P. Zamborini, S. M. Gross, R. W. Murray, Langmuir, 2000, 16, (25), 9699 [Google Scholar]
  32. M. T. Rojas, K. Königer, J. F. Stoddart, A. E. Kaifer, J. Am. Chem. Soc., 1995, 117, (1), 336 [Google Scholar]
  33. G. H. Woehrle, L. O. Brown, J. E. Hutchison, J. Am. Chem. Soc., 2005, 127, (7), 2172 [Google Scholar]
  34. A. C. Templeton, D. E. Cliffel, R. W. Murray, J. Am. Chem. Soc., 1999, 121, (30), 7081 [Google Scholar]
  35. F. P. Zamborini, S. M. Gross, R. W. Murray, Langmuir, 2001, 17, (2), 481 [Google Scholar]
  36. M. Cargnello, N. L. Wieder, T. Montini, R. J. Gorte, P. Fornasiero, J. Am. Chem. Soc., 2010, 132, (4), 1402 [Google Scholar]
  37. H. Murayama, T. Narushima, Y. Negishi, T. Tsukuda, J. Phys. Chem. B, 2004, 108, (11), 3496 [Google Scholar]
  38. M. Ganesan, R. G. Freemantle, S. O. Obare, Chem. Mater., 2007, 19, (14), 3464 [Google Scholar]
  39. V. Huc, K. Pelzer, J. Colloid Interface Sci., 2008, 318, (1), 1 [Google Scholar]
  40. I. Hussain, S. Graham, Z. Wang, B. Tan, D. C. Sherrington, S. P. Rannard, A. I. Cooper, M. Brust, J. Am. Chem. Soc., 2005, 127, (47), 16398 [Google Scholar]
  41. M. Faraday, Phil. Trans. Roy. Soc., 1857, 147, 145 [Google Scholar]
  42. M. T. Reetz, J. G. de Vries, Chem. Commun., 2004, (14), 1559 [Google Scholar]
  43. Q. Liu, J. C. Bauer, R. E. Schaak, J. H. Lunsford, Angew. Chem. Int. Ed., 2008, 47, (33), 6221 [Google Scholar]
  44. S.-W. Kim, J. Park, Y. Jang, Y. Chung, S. Hwang, T. Hyeon, Y. W. Kim, Nano Lett., 2003, 3, (9), 1289 [Google Scholar]
  45. S. U. Son, Y. Jang, K. Y. Yoon, E. Kang, T. Hyeon, Nano Lett., 2004, 4, (6), 1147 [Google Scholar]
  46. W. W. Weare, S. M. Reed, M. G. Warner, J. E. Hutchison, J. Am. Chem. Soc., 2000, 122, (51), 12890 [Google Scholar]
  47. M. Tamura, H. Fujihara, J. Am. Chem. Soc., 2003, 125, (51), 15742 [Google Scholar]
  48. R. Tatumi, T. Akita, H. Fujihara, Chem. Commun., 2006, (31), 3349 [Google Scholar]
  49. V. Mazumder, S. Sun, J. Am. Chem. Soc., 2009, 131, (13), 4588 [Google Scholar]
  50. Z. Li, J. Gao, X. Xing, S. Wu, S. Shuang, C. Dong, M. C. Paau, M. M. F. Choi, J. Phys. Chem. C, 2010, 114, (2), 723 [Google Scholar]
  51. E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A. M. Masdeu-Bultó, B. Chaudret, J. Organomet. Chem., 2004, 689, (24), 4601 [Google Scholar]
  52. A. A. Athawale, S. V. Bhagwat, P. P. Katre, A. J. Chandwadkar, P. Karandikar, Mater. Lett., 2003, 57, (24–25), 3889 [Google Scholar]
  53. T. Mayer-Gall, A. Birkner, G. Dyker, J. Organomet. Chem., 2008, 693, (1), 1 [Google Scholar]
  54. D. I. Gittins, F. Caruso, Angew. Chem. Int. Ed., 2001, 40, (16), 3001 [Google Scholar]
  55. C. J. Serpell, J. Cookson, D. Ozkaya, P. D. Beer, Nature Chem., 2011, 3, (6), 478 [Google Scholar]
  56. D. H. Turkenburg, A. A. Antipov, M. B. Thathagar, G. Rothenberg, G. B. Sukhorukov, E. Eiser, Phys. Chem. Chem. Phys., 2005, 7, (10), 2237 [Google Scholar]
  57. K. A. Flanagan, J. A. Sullivan, H. Müeller-Bunz, Langmuir, 2007, 23, (25), 12508 [Google Scholar]
  58. W. Chen, J. R. Davies, D. Ghosh, M. C. Tong, J. P. Konopelski, S. Chen, Chem. Mater., 2006, 18, (22), 5253 [Google Scholar]
  59. F. Mirkhalaf, J. Paprotny, D. J. Schiffrin, J. Am. Chem. Soc., 2006, 128, (23), 7400 [Google Scholar]
  60. D. Mann, A. Javey, J. Kong, Q. Wang, H. J. Dai, Nano Lett., 2003, 3, (11), 1541 [Google Scholar]
  61. P. Tarakeshwar, D. M. Kim, J. Phys. Chem. B., 2005, 109, (16), 7601 [Google Scholar]
  62. D. Ghosh, S. Chen, J. Mater. Chem., 2008, 18, (7), 755 [Google Scholar]
  63. P. Migowski, J. Dupont, Chem. Eur. J., 2007, 13, (1), 32 [Google Scholar]
  64. R. Venkatesan, M. H. G. Prechtl, J. D. Scholten, R. P. Pezzi, G. Machado, J. Dupont, J. Mater. Chem., 2011, 21, (9), 3030 [Google Scholar]
  65. A. S. Pensado, A. A. H. Pádua, Angew. Chem. Int. Ed., 2011, 50, (37), 8683 [Google Scholar]
  66. H. Ishizuka, T. Tano, K. Torigoe, K. Esumi, K. Meguro, Colloids Surf., 1992, 63, (3–4), 337 [Google Scholar]
  67. D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed., 2005, 44, (48), 7852 [Google Scholar]
  68. S. F. L. Mertens, C. Vollmer, A. Held, M. H. Aguirre, M. Walter, C. Janiak, T. Wandlowski, Angew. Chem. Int. Ed., 2011, 50, (41), 9735 [Google Scholar]
  69. C. Xiao, H. Ding, C. Shen, T. Yang, C. Hui, H.-J. Gao, J. Phys. Chem. C, 2009, 113, (31), 13466 [Google Scholar]
  70. H. Bönnemann, R. Brinkmann, P. Neiteler, Appl. Organomet. Chem., 1994, 8, (4), 361 [Google Scholar]
  71. E. Coronado, A. Ribera, J. García-Martínez, N. Linares, L. M. Liz-Marzán, J. Mater. Chem., 2008, 18, (46), 5682 [Google Scholar]
  72. H. Bönnemann, R. Brinkmann, R. Köppler, P. Neiteler, J. Richter, Adv. Mater., 1992, 4, (12), 804 [Google Scholar]
  73. M. T. Reetz, W. Helbig, J. Am. Chem. Soc., 1994, 116, (16), 7401 [Google Scholar]
  74. H. Bönnemann, G. Braun, W. Brijoux, R. Brinkmann, A. Schulze Tilling, K. Seevogel, K. Siepen, J. Organomet. Chem., 1996, 520, (1–2), 143 [Google Scholar]
  75. J. S. Bradley, ‘The Chemistry of Transition Metal Colloids’, in: “Clusters and Colloids: From Theory to Applications”, ed. G. Schmid, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1994 [Google Scholar]
  76. B. Corain, K. Jerabek, P. Centomo, P. Canton, Angew. Chem. Int. Ed., 2004, 43, (8), 959 [Google Scholar]
  77. L. D. Rampino, F. F. Nord, J. Am. Chem. Soc., 1941, 63, (12), 3268 [Google Scholar]
  78. N. Toshima, T. Yonezawa, New J. Chem., 1998, (11), 1179 [Google Scholar]
  79. H. Bönnemann, R. M. Richards, Eur. J. Inorg. Chem., 2001, 2001, (10), 2455 [Google Scholar]
  80. Y. Yu, Y. Zhao, T. Huang, H. Liu, Pure Appl. Chem., 2009, 81, (12), 2377 [Google Scholar]
  81. W. Tu, H. Liu, J. Mater. Chem., 2000, 10, (9), 2207 [Google Scholar]
  82. B. Thiébaut, Platinum Metals, Rev., 2004, 48, (2), 62 [Google Scholar]
  83. P. D. Stevens, G. Li, J. Fan, M. Yen, Y. Gao, Chem. Commun., 2005, (35), 4435 [Google Scholar]
  84. V. Calò, A. Nacci, A. Monopoli, F. Montingelli, J. Org. Chem, 2005, 70, (15), 6040 [Google Scholar]
  85. “Dendrimers and Other Dendritic Polymers”, eds. J. M. J. Fréchet, D. A. Tomalia, John Wiley & Sons, Ltd, Chichester, UK, 2001 [Google Scholar]
  86. S. Pande, M. G. Weir, B. A. Zaccheo, R. M. Crooks, New J. Chem., 2011, 35, (10), 2054 [Google Scholar]
  87. L. Balogh, D. A. Tomalia, J. Am. Chem. Soc., 1998, 120, (29), 7355 [Google Scholar]
  88. L. K. Yeung, R. M. Crooks, Nano Lett., 2001, 1, (1), 14 [Google Scholar]
  89. M. V. Gomez, J. Guerra, A. H. Velders, R. M. Crooks, J. Am. Chem. Soc., 2009, 131, (1), 341 [Google Scholar]
  90. R. Andrés, E. de Jesús, J. C. Flores, New J. Chem., 2007, 31, (7), 1161 [Google Scholar]
  91. V. Chechik, M. Zhao, R. M. Crooks, J. Am. Chem. Soc., 1999, 121, (20), 4910 [Google Scholar]
  92. Y. Niu, L. K. Yeung, R. M. Crooks, J. Am. Chem. Soc., 2001, 123, (28), 6840 [Google Scholar]
  93. L. K. Yeung, C. T. Lee Jr., K. P. Johnson, R. M. Crooks, Chem. Commun., 2001, (21), 2290 [Google Scholar]
  94. R. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res., 2001, 34, (3), 181 [Google Scholar]
  95. L. Wu, B.-L. Li, Y.-Y. Huang, H.-F. Zhou, Y.-M. He, Q.-H. Fan, Org. Lett., 2006, 8, (16), 3605 [Google Scholar]
  96. M. Zhao, L. Sun, R. M. Crooks, J. Am. Chem. Soc., 1998, 120, (19), 4877 [Google Scholar]
  97. M. Zhao, R. M. Crooks, Angew. Chem. Int. Ed., 1999, 38, (3), 364 [Google Scholar]
  98. D. B. Pacardo, M. Sethi, S. E. Jones, R. R. Naik, M. R. Knecht, ACS Nano, 2009, 3, (5), 1288 [Google Scholar]
  99. R. M. Kramer, C. Li, D. C. Carter, M. O. Stone, R. R. Naik, J. Am. Chem. Soc., 2004, 126, (41), 13282 [Google Scholar]
  100. Y. Li, G. P. Whyburn, Y. Huang, J. Am. Chem. Soc., 2009, 131, (44), 15998 [Google Scholar]
  101. R. Coppage, J. M. Slocik, M. Sethi, D. B. Pacardo, R. R. Naik, M. R. Knecht, Angew. Chem. Int. Ed., 2010, 49, (22), 3767 [Google Scholar]
  102. J. M. Slocik, M. O. Stone, R. R. Naik, Small, 2005, 1, (11), 1048 [Google Scholar]
  103. C.-Y. Chiu, Y. Li, Y. Huang, Nanoscale, 2010, 2, (6), 927 [Google Scholar]
  104. M. N. Nadagouda, R. S. Varma, Green Chem., 2008, 10, (8), 859 [Google Scholar]
  105. Y. Sun, Y. Yao, C.-G. Yan, Y. Han, M. Shen, ACS Nano, 2010, 4, (4), 2129 [Google Scholar]
  106. J. D. Senra, L. F. B. Malta, M. E. H. M. da Costa, R. C. Michel, L. C. S. Aguiar, A. B. C. Simas, O. A. C. Antunes, Adv. Synth. Catal., 2009, 351, (14–15), 2411 [Google Scholar]
/content/journals/10.1595/147106712X632415
Loading
/content/journals/10.1595/147106712X632415
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test