a = abstract |
|
Acetylenes, hydrogenation |
154 |
Alcohols, benzyl, from benzaldehyde, a |
43 |
crotyl, from crotonaldehyde, a |
94 |
ethyl, decomposition, a |
94 |
furfuryl, polymerisation, acid-catalysed |
164 |
hydroformylation, a |
95 |
methyl, electrooxidation, a |
44, 96, 138, 140 |
oxidation |
94, 139, 154 |
aerobic |
15 |
selective, to aldehydes |
112 |
+ sc-CO2, solvent, a |
43 |
Aldehydes, acet-, decomposition, a |
94 |
for C -alkylation, of barbituric acids, a |
186 |
from alcohols |
112, 139 |
hydrogenation |
13, 43, 94, 154 |
oxidation |
154 |
Alfa Aesar, “Inorganics, Organics, Metals and Materials’ |
91 |
Alkaloids, cinchona, Pt/Al2O3 modification, a |
94 |
Alkenes, hydroamination |
112 |
Wacker reaction, a |
43 |
Alkylation, -C, of barbituric acids with carbonyls, a |
186 |
allylic |
102, 112, 139 |
Alkynes, aryl-, by Sonogashira coupling |
163 |
internal, trans -hydrogenation, a |
140 |
Alloys, dental |
62 |
Aluminides, Pt, coatings |
124 |
Amination, in organic synthesis |
139, 154, 186 |
Amines, from aromatic nitro compounds, a |
43 |
primary, conversion to secondary |
21 |
Ammonia, decomposition |
40 |
oxidation, in nitric acid manufacture, start-up |
34 |
Pt catalysts, a |
94 |
Pt/styrene divinyl benzene copolymer, a |
94 |
in SCR |
176 |
sensor, a |
138 |
stripping, from H2O, a |
94 |
Antibacterial Agents, Ru complexes, a |
44, 187 |
Antibiotics, Ru complexes |
62 |
Antifungal Agents, Ru complexes, a |
96 |
Antimicrobial Drugs, Ru complexes |
62 |
Aryl Bromides, Heck reactions, a |
43, 138 |
Aryl Chlorides, Heck reactions, a |
95 |
Autocatalysts, conferences |
31, 71 |
manufacture of |
70, 175 |
on-board diagnostics |
50, 176 |
reviews |
50, 176 |
spent, recovery, of pgms |
123 |
Barbituric Acids, C -alkylation with carbonyls, a |
186 |
Battery, Ni-MH, a |
92 |
Benzene, oxidation, a |
184 |
Biphasic, see Catalysis |
|
Bisdihydroxylation, 1, 5-cyclooctadiene, a |
187 |
Book Reviews, “Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes” |
122 |
“Catalytic Polymerization of Cycloolefins” |
60 |
“Fine Chemicals through Heterogeneous Catalysis” |
154 |
“Handbook of Commercial Catalysts – Heterogeneous Catalysts” |
83 |
“Hydrogen in Metal Systems II” |
131 |
Cancer, anti-, Pt azole-bridged complexes, a |
44 |
Ru complexes |
62 |
drugs, a |
96, 187 |
Capacitors, poly(3, 4-ethylenedioxythiophene) RuOx a |
140 |
IrOx/Pb(Zr,Ti)O3/Ir, for ferroelectric memory, a |
187 |
Ta-RuO2 diffusion barriers, a |
44 |
Carbenes, Pd, heterocyclic, a |
184 |
Ru, Cp*Ru-allylcarbenes, a |
184 |
with imidazolin-2-ylidenes, metathesis |
155 |
Ru(L)2Cl2(carbene), L = imidazoline-2-ylidenes |
112 |
Carbohydrates, production |
154 |
Carbon Oxides, CO2, from benzene oxidation, a |
184 |
liquid, solvent, a |
186 |
sc-, solvent |
13, 43, 185 |
CO, copolymerisation, alternate, a |
44 |
from benzene oxidation, a |
184 |
oxidation, a |
43, 94, 140 |
TWCs |
164, 176 |
sensor, a |
93 |
stripping, from PtRu anodes, in DMFCs, a |
96 |
Carbonyls, [Rh6(CO)15]2−, [Rh(CO)2]+, in faujasites, “ship-in-bottle” synthesis, a |
136 |
Carboplatin, decomposition, in H2O, with Cl−, a |
96 |
Carboxylic Acids, HCOOH, electrooxidation, a |
137 |
Catalysis, biomimetic, a |
139 |
biphasic |
13, 95 |
book reviews |
60, 83, 122, 154 |
fluorous biphasic |
13 |
heterogeneous, a |
43, 94, 138-139, 186 |
AVADA™ process, ethyl acetate manufacture |
12 |
LEAP™ process, vinyl acetate monomer production |
12 |
organic-inorganic hybrid materials, clean synthesis |
102 |
in synthesis, of fine chemicals |
154 |
homogeneous, a |
43-44, 95, 139-140, 186-187 |
in ionic liquids |
13, 95 |
in supercritical liquids, sc-CO2 |
13, 43 |
using thermoregulated phase transfer |
123 |
Catalysts, auto-, see Autocatalysts |
|
book reviews |
60, 83, 122, 154 |
Catalyst Sample Kits, Catalytic Reaction Guide, “The Catalyst Technical Handbook” |
110 |
FibreCat™, high throughput screening techniques |
112 |
homogeneous, supported on polymer fibres |
112 |
manufacture of, supported catalysts, in ProCat2 |
12 |
manufacturing techniques, conference |
20 |
promoters, Bi, Pb |
154 |
recycling, a |
43, 94, 138, 139 |
selective oxidation of alcohols |
112 |
spent, recovery of pgms, pyrometallurgical |
112 |
from waste streams, with Smopex™ fibres |
112 |
three-way, see Three-Way Catalysts |
|
Catalysts, Iridium, [Ir(COD)(PPh3)2]BFV4/- montmorillonite, amines |
21 |
Catalysts, Iridium Complexes, Ir chloride, ROMP |
60 |
Catalysts, Osmium Complexes, [(η6-Cy)Os(L)]2, L = (S)-BINAP, (S)-BINPO, Diels-Alder, a |
140 |
Os chloride, ROMP |
60 |
OsHCl(CO)(O2)(PCy3)2, NBR hydrogenation, a |
95 |
OsO4, 1, 5-cyclooctadiene bisdihydroxylation, a |
187 |
Catalysts, Palladium, Ce-Pd/mordenite, NOx reduction |
164 |
Pd, oxidation, of alcohols, aldehydes |
154 |
phenols amination |
154 |
poisoning, in CH4 combustion |
164 |
TWC, with Ni, H2S suppression |
164 |
Pd colloids, immobilised |
154 |
Pd powder, with KF, Suzuki couplings, a |
139 |
Pd-PPh2-PAMAM-SiO2, Heck reactions, a |
43 |
Pd/α-Al2O3 membrane, oil hydrogenation, a |
186 |
Pd/Ag, doped, hydrogenation of acetylenes |
154 |
Pd/Al2O3, acetaldehyde, EtOH, decomposition, a |
94 |
TWC, Pd sintering |
164 |
Pd/C |
154 |
C -alkylation of barbituric acids with carbonyls, a |
186 |
C-N, C-O hydrogenolysis |
112 |
imine hydrogenation, in Neotame® synthesis |
112 |
oxidation of alcohols, a |
94 |
+ Zn powder, hydrogenation, a |
43 |
Pd/Ce0.63Zr0.37O2, TWC, oxygen storage capacity |
164 |
Pd/MOx, Heck reactions, aryl bromides + olefins, a |
138 |
Pd/Pb, doped, hydrogenation of acetylenes |
154 |
Pd/support, hydrogenation of acetylenes |
154 |
Pd/zeolite, Heck reactions, aryl bromides + olefins, a |
138 |
Pd(II)/hydrotalcite, + O2, oxidation of alcohols, a |
139 |
PdO/support, as combustore, for gas turbines |
164 |
S-C-S-Pd(II)/PNIPAM, -/polyethylene glycol), a |
43 |
Catalysts, Palladium Complexes, (α3-allyl)Pd, electronic interactions, a |
139 |
in C-C, C-N bond formation |
13 |
ferrocenyl phosphine Pd/SiO2, allylic alkylation |
102 |
orthopalladated aryloxime, biomimetic hydrolysis, a |
139 |
P*-chiral phosphapalladacycle, hydroarylation, a |
43 |
palladacycles, high throughput screening techniques |
112 |
Pd(0)+poly(N-isopropylacrylamide)-boundphosphines, coupling reactions, thermomorphic conditions, a |
43 |
Pd0PdII, PdII/PdIV, in Heck reaction mechanism, a |
139 |
Pd acetate, Pd chloride, H2O emulsion polymerisation |
60 |
Pd-pyridylimine/amorphous mesoporous silica |
102 |
Pd-pyridylimine/micelle templated silica |
102 |
[Pd(π-allyl)Cl]2 + FerroPHOS, allylic alkylation, a |
139 |
Pd(BINAP)(OTf)2, alkene hydroamination |
112 |
PdCl2 + CuCl2, Wacker reaction, of alkenes, a |
43 |
PdCl2dppf, coupling reactions |
22 |
PdCl2(PhCN)2, silacyclobutanes + aryl iodides, a |
186 |
[PdCl(C3H5)]2−-tetraphosphine, allylic amination, a |
139 |
Pd(dba)2/di-l-adamantyl-n -butylphosphine, a |
95 |
Pd(dba)2/dppf, C-N coupling |
22 |
Pd2(dba)3, H2O2 generation, a |
186 |
Pd2(dba)3, + P(o -CH3C6H4)3, cross-coupling, CH3I+TIC |
33 |
Pd2(dba)3/rac -BINAP, tetraazafulvalenes amination, a |
186 |
Pd(dppf)(OTf)2, styrene hydroamination |
112 |
Pd(OAc)2, oxidation of alcohols, a |
94 |
Pd(OAc)2+o -tolyldiazaphospholidine, hydroarylation, a |
43 |
Pd(OAc)2/Cu(OAc)2/LiOAc, Mizoroki-Heck reactions, a |
43 |
Pd(OAc)2-PR3, telomerisation of phenols with dienes, a |
95 |
Pd(OAc)2/BINAP, dichloropyridines amination, a |
186 |
Pd(OAc)2/dppf, C-N, C-O coupling |
22 |
Pd(P-P)(Ar)Br, PhBr + aminoarenes cross-coupling |
13 |
[Pd(P(C6H5)3)2]Cl2, H2O2 generation, a |
186 |
Pd(PPh3)2Cl2/CuI, Sonogashira couplings, microwave |
163 |
Pd(PPh3)4, diene hydroamination, with anilines |
112 |
silacyclobutanes + aryl iodides, a |
186 |
vinyl aldehyde hydrogenation |
13 |
Catalysts, Platinum, Au-Pt, MeOH electrooxidation, a |
138 |
Pt(111), CO oxidation, H2 oxidation, a |
94 |
Pt, at cathode, for PEMFCs |
164 |
CO removal, from diesel exhaust |
176 |
Fe promoted, hydrogenation, of aldehydes, ketones |
154 |
HC removal, from diesel exhaust |
176 |
NH3 oxidation, a |
94 |
NOx storage, S poisoning, regeneration |
164 |
oxidation, of alcohols, aldehydes |
154 |
poisoning, in CH4, combustion |
164 |
Pt nanoparticles/SiO2, cyclohexene dehydrogenation, a |
94 |
Pt-Au, NOx reduction |
164 |
Pt-Co/, Pt-Cr/, Pt-Ni/, Pt-Co-Cr/, Pt-Co-Ni/C, a |
140 |
Pt-Cr, Pt-Fe, Pt-Mn, at cathode, for PEMFCs |
164 |
Pt-CuO/SiO2-doped hydrous Ti oxide, NOx reduction |
164 |
Pt-Mo/C electrocatalysts, H2 electrooxidation, a |
95 |
Pt-Re, reforming, of naphthenes, paraffins |
164 |
Pt-Ru, at anode, for PEMFCs |
164 |
Pt-Ru/C electrocatalysts, H2 electrooxidation, a |
95 |
MeOH oxidation, a |
96, 140 |
Pt/Al2O3, CH4 oxidation |
164 |
cinchona-modfied, ethyl pyruvate hydrogenation, a |
94 |
CO oxidation, a |
43 |
Pt/γ-Al2O3 + Cs, K, Li, Rb, NO reduction, by propene, a |
138 |
Pt/C, C -alkylation of barbituric acids with carbonyls, a |
186 |
Pt-Ru/C, H2 oxidation, H2/CO oxidation, a |
140 |
Pt/C electrocatalysts, H2 electrooxidation, a |
95 |
Pt/CeO2, crotonaldehyde hydrogenation, a |
94 |
on monoliths, water gas shift reactors |
164 |
Pt/clay, cinnamaldehyde hydrogenation |
154 |
Pt/SiO2, + HCO2H, in chemical denization, a |
43 |
Pt/styrene divinyl benzene copolymer, NH3 oxidation, a |
94 |
Pt/US-Y zeolites, cycloalkane hydrocracking, a |
138 |
Pt/zeolite, H2 adsorption |
164 |
Pt/ZMS-5, thiophene hydrodesulfurisation, a |
186 |
PtRu anode catalysts, CO stripping, a |
96 |
Catalysts, Platinum Complexes, (PPh3)2PtCl2, hydroformylation, a |
95 |
Catalysts, Rhodium, Rh0SiO2, TWC, CO oxidation |
164 |
Rh, NOx storage, S poisoning, regeneration |
164 |
poisoning, in CH4 combustion |
164 |
Rh/Ce0.63Zr0.37O2, TWC, oxygen storage capacity |
164 |
Rh/SiO2, sol-gel preparation, a |
186 |
Rhx+/Ce0.75Zr0.25O2, TWC, CO oxidation |
164 |
Catalysts, Rhodium Complexes, chiral dirhodium(II) carboxamidates |
112 |
(η6-C6H5BPh3)Rh−RH+(1, 5-COD), thiazepinones synthesis |
69 |
Cp*Rh + chiral N, N′-chelate ligand |
59 |
H2O soluble, higher olefin hydroformylation |
123 |
fhermoregulated phase transfer catalysis |
123 |
Rh2(OAc)4, fluoroalkyl dihydrofurans synthesis, a |
139 |
Rh6(CO)16, norbornadienes + CO, norbornenes + CO, a |
44 |
Rh(CO)2acac/(SO3Na)2Xantphos, hydroformylation, a |
95 |
[Rh(COD)Cl]2/TPPTS, hydroformylation, a |
95 |
[Rh(COD)(PPh3)2]BF4/montmorillonite, amines |
21 |
[Rh(Duphos)(diene)]−BF4−/alumina, + heteropoly acid |
112 |
[Rh(PHANEPHOS)(MeOH)2]1, enamide hydrogenation |
13 |
Catalysts, Ruthenium, Pt-Ru, at anode, for PEMFCs |
164 |
Pt-Ru/C electrocatalysts, H2 electrooxidation, a |
95 |
MeOH oxidation, a |
96, 140 |
PtRu anode catalysts, CO stripping, a |
96 |
Ru, carbohydrate production |
154 |
CO oxidation, a |
94 |
Ru-CeO2/Y-form zeolite, NH3 decomposition |
40 |
Ru/C, Pt-Ru/C, H2 oxidation, H2/CO oxidation, a |
140 |
Catalysts, Ruthenium Complexes, [Cp*Ru(alkene)]+, internal alkynes, trans -hydrogenation, a |
140 |
Grubbs’ catalyst |
60, 155 |
L2X2Ru=CHR, (PCy3)2Cl2Ru=CHPh, metathesis, a |
95 |
Ru carbenes, with imidazolin-2-ylidenes; polymer supported; Schiffbase ligated, metathesis |
155 |
Ru chloride, ROMP |
60 |
Ru N -heterocyclic carbenes, olefin metathesis, a |
95 |
[RuCl2(arene)]2 + (1S, 2S)-N -(arylsulfonyl)-1, 2-diphenylethylenediamine, a |
44 |
RuCl2(phosphine)2(1, 2-diamine), C=O hydrogenation, a |
187 |
RuCl2(PPh3)3, star-shaped polymer synthesis |
82 |
RuCl2(PPh3)3 + TEMPO, alcohol aerobic oxidation |
15 |
‘RuH2(PPh3)3’, alcohol aerobic oxidation |
15 |
Ru(II), asymmetric transfer hydrogenation, a |
44 |
Ru(L)2Cl2(carbene), L = imidazoline-2-ylidenes |
112 |
(S, S-N -p -tosyl-1, 2-diphenylethylene-1, 2-diamine-Ru, a |
44 |
Chemical Fluid Deposition, Pd |
14, 185 |
Cinnamaldehyde, hydrogenation |
154 |
Cinnamate Esters, from aryl bromides+butyl acrylate, a |
43 |
Cisplatin, a |
44, 96, 187 |
Clusters, colloidal. Ir, Pd, Pt, Rh, Ru |
11 |
Pd, H solubility |
166 |
Pd cluster/, Pt cluster/polymer composites, a |
41 |
see also Nanoclusters |
|
Coatings, Pt aluminide |
124 |
see also Deposition and Electrodeposition |
|
Colloids, clusters, Ir, Pd, Pt, Rh, Ru |
11 |
Pd, immobilised |
154 |
Ru(bpy)32+-zeolite Y, Ru(bpy)32−-viologen-zeolite Y, a |
137 |
Combustion, CH4 |
164 |
Conferences, 4th Anglo-Dutch Symp. Organomet. Chem. Appl. Catai., Utrecht, Oct., 2000 |
13 |
7th Grove Fuel Cell Symposium, London, Sept., 2001 |
91, 146 |
8th Int. Conf. on the Chem. of the PGMs, University of Southampton, July, 2002 |
111 |
17th NACS Meeting, Toronto, June, 2001 |
164 |
21st Century Emissions Technology, London, Dec, 2000 |
31 |
Catal. in Org. Synth., New Jersey, May, 2001 |
112 |
HTM-2001, Donetsk-Mariupol, Ukraine, May, 2001 |
130 |
ISPM’2001, Hong Kong SAR, March, 2001 |
123 |
Markets of Glass Fiber Materials, High-Quality Glasses, Monocrystals and Precious-Metal Equipment for Their Production, Veliky Novgorod, Russia, June, 2001 |
40 |
SAE, Detroit, U.S.A., March, 2001 |
71 |
Techniques of Catalyst Manufacture, Loughborough, U.K., Nov., 2000 |
20 |
Copper, sulfide ores, recovery of Os-187 |
132 |
Coupling Reactions, C-C, C-N, C-O coupling |
22 |
Kumada-Hayashi coupling |
22 |
PhBr + aminoarenes |
13 |
sp-sp2 couplings, thermomorphic conditions, a |
43 |
see also Heck Reactions and Suzuki Couplings |
|
Crown Ethers, polymer-,+K2PdCl4,+K2PtCl4, a |
92 |
CRT, for diesel emission control |
31, 71, 176 |
MacRobert Award |
30 |
Cycloalkanes, hydrocracking, a |
138 |
Cyclohexene, reaction with H2, a |
94 |
1, 5-Cyclooctadiene, bisdihydroxylation, a |
187 |
Cycloolefins, copolymerisation |
60 |
RCM |
60 |
ROMP |
60, 155 |
Dehydrogenation, cyclohexene, a |
94 |
Dendrimers, immobilisation, of Ru carbenes |
155 |
Denitration, HNO3 nuclear fuel reprocessing waste, a |
43 |
Dental, alloys |
62 |
Deposition, chemical fluid, Pd |
14, 185 |
see also Coatings and Electrodeposition |
|
Deuterium, absorption, desorption, PdD, a |
184 |
solubility, in Pd-Rh, a |
41 |
Diels-Alder Condensation |
112, 140, 154 |
1, 3-Dienes, reaction with phenols, a |
95 |
Diesel, emission control |
30, 31, 50, 71, 176 |
NOx removal |
71, 176 |
particulate filters |
71, 176 |
particulates, control by CRT |
30, 31, 71, 176 |
Pt oxidation catalyst, CO removal, HC removal |
176 |
β-Diketones, Ru(III) complexes, for molecular wires |
2 |
Pt acetylacetonate, availability and uses |
123 |
Diodes, emitting, Ru(bpy)3+ DNA-polyaniline, a |
185 |
Elastic Properties, Ir, Pt, Rh, Pt-Ir, Pt-Rh, modulus of rigidity, Poisson’s ratio, Young’s modulus |
74 |
Electrical Contacts, ohmic contacts, Pd/Ge/Ti/Pt, a |
44 |
Electrical Resistance, Pd-Rh, a |
41 |
Electrochemistry, a |
92, 137 |
Electrodeposition, Pd, brush-plating, a |
185 |
Pd nanoparticles, synthesis, a |
42 |
see also Coatings and Deposition |
|
Electrodeposition and Surface Coatings, a |
92, 137, 185 |
Electrodes, C paste, with [Ru(NH3)6]3+ a |
185 |
H2 storage alloy, Pd2+/C powder addition, a |
92 |
micro-, Pt-Ir, modified, isocitrate sensor, a |
93 |
Rh-C fibre |
183 |
poly(3, 4-ethylenedioxythiophene) RuOx, a |
140 |
Pt, on Al2O3, by double-print Pt screen printing, a |
187 |
with chitin/glucose oxidase film, glucose sensor, a |
93 |
in exhaust gas O2 sensor |
176 |
HCOOH oxidation, low-intensity ultrasound, a |
137 |
Pt-Nafion, CH4 determination, a |
138 |
Pt/Nafion®, NO2 sensor, a |
185 |
Pt/Ti, nanostructured, HCOOH oxidation, a |
137 |
Electroless Plating, Ni, on Pd films/quartz resonator, a |
42 |
Pd, plating baths, a |
137 |
Electrolytes, [CoxPdy(CN)zClv(CH2nH4n+2On+1)K1 ], a |
92 |
Emission Control, legislation |
50, 175, 176 |
motor vehicles |
30, 31, 50, 70, 71, 123, 175, 176 |
in China |
123, 175 |
VOCs |
123 |
Engines, CAI, CNG |
31 |
Etching, anisotropic, of RuO2 and Ru, for DRAM, a |
96 |
Ethyl Pyruvate, hydrogenation, a |
94 |
Exaltolide®, synthesis |
155 |
|
Faujasite Cages, Rh carbonyls, “ship-in-bottle”, a |
136 |
Films, NiPt, Ni3Pt, NiPt3, magnetic anisotropy, a |
96 |
Pd, by chemical fluid deposition |
14 |
on a quartz resonator, for electroless Ni plating, a |
42 |
Ru, RuOx for (Ba, Sr)TiO3 dielectric film, a |
187 |
see also Thin Films |
|
Fine Chemicals, synthesis, by heterogeneous catalysis |
154 |
Fluorescence, Ru(II) polypyridyls, pH sensor system, a |
42 |
Formic acid, oxidation, a |
137 |
Fracture, brittle intercrystalline, Ir, Ir-3%Re-2%Ru |
179 |
brittle transcrystalline, Ir, Ir-3%Re-2%Ru |
179 |
Fuel Cells, a |
44, 95 -96, 140 |
AFC |
146 |
conferences |
91, 123, 146, 164 |
defence applications |
146 |
DMFC |
146 |
Pt-Sn electrodes, MeOH electrooxidation, a |
44 |
PtRu anode catalysts, CO stripping, a |
96 |
electrodes |
131 |
‘Fuel Cell Today’ internet portal |
152 |
Grove Medal |
146 |
MCFC |
146 |
PAFC |
146 |
PEFC, catalysts |
123 |
Pt/, Pt-Mo/, Pt-Ru/C, electrocatalysts, a |
95 |
PEMFC |
146 |
catalysts, anode, Pt-Ru, cathode, Pt, Pt-Cr, -Fe, -Mn |
164 |
portable power |
146 |
Pt-Ru/C electrocatalysts, MeOH oxidation, a |
96, 140 |
review, a |
95 |
Seventh Grove Fuel Cell Symposium |
91, 146 |
SOFC |
146 |
SPE-DMFC, Pt-Co/, Pt-Cr/, Pt-Ni/, Pt-Co-Cr/, Pt-Co-Ni/C, O2 reduction, a |
140 |
stationary power generation |
146 |
transportation |
146 |
water gas shift reactors, Pt/CeO2, on monoliths |
164 |
Gas Turbines, Pt aluminide coatings |
124 |
catalytic combustore, PdO/support |
164 |
Gauzes, Pt, NH3 oxidation, a |
94 |
Pt-Rh, electrical heating device for |
34 |
Glass, conference |
40 |
Glucose, sensors, a |
93, 138, 185 |
Gold, Au-Pt, nanoparticles, MeOH electrooxidation, a |
138 |
Au-Pt-Sn phase diagram, AuPt2Sn4 formation, a |
92 |
Grain Boundaries, brittleness, Ir |
179 |
Grove Fuel Cell Symposium, Seventh |
91, 146 |
Heck Reactions, a |
43, 95, 138 |
Mizoroki-, a |
43 |
Pd0/PdII, PdII/PdIV, mechanism, a |
139 |
Pd-pyridylimme/amorphous mesoporous silica |
102 |
thermomorphic conditions, a |
43 |
Heterostructures, Ru/p-InP(100), a |
140 |
High Temperature, mechanical properties, of pgms |
74 |
High Throughput Screening Techniques, FibreCat™ |
112 |
multi-channel reactor |
13 |
Pd catalysts |
112 |
History, Rhodium Bicentenary Competition |
59, 129 |
William Hyde Wollaston, discovery of Rh |
59 |
Hydrazine, sensor |
183 |
Hydroamination, alkenes, dienes, styrenes |
112 |
Hydroarylation, asymmetric, norbomene, a |
43 |
Hydrocarbons, traps, catalysed, in emission control |
176 |
Hydrocracking, cycloalkanes, a |
138 |
Hydrodesulfurisation, thiophene, a |
186 |
Hydroformylation, -2-propenol, -2-propynol, a |
95 |
ionic liquids, as solvents, a |
95 |
Hydrogen, absorption, Pd0.97Al0.03, internal oxidation |
166 |
book review, “Hydrogen in Metal Systems II” |
131 |
conference |
130 |
desorption, during Pd brush-plating, a |
185 |
Pd0.97Al0.03, internal oxidation |
166 |
economy |
130, 131 |
electrooxidation, Pt/, Pt-Mo/, Pt-Ru/C, a |
95 |
generation, from H2O, a |
42, 43 |
H-bonding, intrans- [Pt(PR3)2H(FHF)], a |
41 |
H-induced phase separation, Pd0.80Pt0.20, Pd-Rh |
166 |
interaction, with Pd4Cu6, PdCu12, PdCu(lll), a |
136 |
with Pd, Pd alloys, Pt, Pt alloys |
131 |
interstitial location, in Pd |
130 |
isotope diffusion, in Pd |
130 |
with O2, H2O2 generation, a |
186 |
oxidation, a |
94, 140 |
photoevolution, cytochrome C3-viologen-Ru(Il) triad, a |
184 |
reagent, opposing reagents chemical fluid deposition, a |
185 |
sensors |
42, 93, 174, 185 |
solubility, in Pd |
114 |
in Pd clusters, nanocrystalline Pd |
166 |
in Pd-Ag, Pd-Ni, Pd-Pt, Pd-Rh, Pd-Si |
114 |
in Pd-Al, Pd-Mg, after internal oxidation |
166 |
in Pd/Al2O3, |
166 |
in Pd/MOx composites |
166 |
storage |
131 |
storage materials |
123 |
Hydrogen Peroxide, generation, from H2 + O2, a |
186 |
Hydrogenation, acetylenes |
154 |
aldehydes |
13, 43, 94, 154 |
aromatic nitro compounds, a |
43 |
enamide substrates |
13 |
ethyl pyruvate, a |
94 |
ketones |
44, 154, 187 |
nitrile-butadienc rubber, a |
95 |
nitro-group |
154 |
nitrobenzene |
164 |
sunflower seed oil, a |
186 |
trans-, internal alkynes, a |
140 |
Hydrogenolysis, C-N, C-O |
112 |
Hydrolysis, biomimetic, a |
139 |
Hydrotalcites, Pd(II)/, + O2, alcohols oxidation, a |
139 |
Immunosuppressants, Ru complexes |
62 |
Ionic Liquids, solvent |
13, 41, 95 |
Iridium, brittle intercrystallinc fracture |
179 |
brittle transcrystalline fracture |
179 |
Co/Ir/Co, magnetism, transport properties, a |
96 |
colloidal clusters |
11 |
elastic, high temperature mechanical properties |
74 |
IrO3/Pb(Zr, Ti)O3/Ir, capacitors, a |
187 |
polycrystalline |
179 |
refining of |
179 |
single crystals |
179 |
Iridium Alloys, Ir-0.3%W, doped, with Ce, Th |
179 |
single crystals |
179 |
Ir-0.3 W-0.0O6 Th-O.OO5 Al, with Al, Cr, Fe, Ni, Si, a |
92 |
grain boundary segregation, of impurities, a |
92 |
Ir-3%Re-2%Ru, brittle intercrystalline fracture |
179 |
brittle transcrystalline fracture |
179 |
single crystals |
179 |
microelectrodes, Pt-Ir, isocitrate sensor, a |
93 |
Pt0.8/Ir0.2, superconducting tips, STM, a |
138 |
Pt-Ir, elastic, high temperature mechanical properties |
74 |
Iridium Complexes, Ir(III) polypyridines, microwave-assisted synthesis, phosphorescence, a |
93 |
[(ppy)2Ir(phen-phen)Ir(ppy)2]2+, luminescence, a |
93 |
Iridium Compounds, IrOx/Pb(Zr, Ti)O3/Ir, capacitors, a |
187 |
Iron, 1, 1′-bis(diphenylphosphino)ferrocene, pgm complexes, in non-chiral catalysis |
22 |
Isocitrate, sensor, a |
93 |
Johnson Matthey, Autocatalyst Plant, in China |
175 |
“Catalysis in Organic Synthesis” symposium |
112 |
Catalyst Sample Kits, Catalytic Reaction Guide, “The Catalyst Technical Handbook” |
110 |
CRT™, MacRobert Award |
30 |
European Autocatalyst Plant, Royston, U.K. |
70 |
‘Fuel Cell Today’ internet portal |
152 |
“Platinum 2001” |
111 |
ProCat2 Process Catalyst Plant |
12 |
Rhodium Bicentenary Competition |
59, 129 |
Ketones, acetophenone, asymmetric reduction |
59 |
for C-alkylation, of barbituric acids, a |
186 |
from alcohols, a |
139 |
hydrogenation |
44, 154, 187 |
Kumada-Hayashi coupling |
22 |
Langmuir-Blodgett Films, with Ru(bpy)22+, a |
185 |
Luminescence, [(bpy)2Os(phen-phen)Os(bpy)2]4+, a |
93 |
[(bpy)2Ru(μ-bipy-O-bpy)Os(bpy)2]4+, a |
137 |
[(bpy)2Ru(μ-bipy-O-bpy)Ru(bpy)2]4+, a |
137 |
[(bpy)2Ru(phen-phen)Ru(bpy)2]4−, a |
93 |
1, 3-[Cl(Et2P)2PdC≡C]2-5-[i Pr)3SiC≡C]C6H3, a |
137 |
1, 3, 5-[Cl(Et3, P)2PdC≡C]3C6H3, a |
137 |
[(Me2bpy)2Os(phen-phen)Os(Me2bpy)2]4+, a |
93 |
[(ppy)2Ir(phen-phen)Ir(ppy)2]2+, a |
93 |
[Ru(bpy)3]2+, a |
137 |
[Ru(Ph2phen)2DCbpy]2−/polymer, pH sensor system, a |
42 |
Magnetism, CeRu2Si2, a |
41 |
Co/Ir/Co sandwiches, a |
96 |
NiPt, Ni3Pt, NiPt3, magnetic anisotropy, a |
96 |
RuSr2GdCu2O8, a |
184 |
Medical, brain imaging, positron emission tomography |
33 |
Medical Uses, a |
44, 96, 187 |
Ru complexes |
62 |
Membranes, diffusion, Pd alloys |
131 |
Pd alloys, H2 permeation |
131 |
Pd/α-Al2O3, sunflower seed oil hydrogenation, a |
186 |
Pd/porous glass, -/stainless steel, a |
137 |
Memory, DRAM, anisotropic etching of RuO2, Ru, a |
96 |
ferroelectric, IrOx/Pb(Zr, Ti)O3/Ir, capacitors, a |
187 |
Metallacycles, Pt(II) bis(sulfonamides), a |
136 |
Metallisation, Rh, on C fibre microelectrodes |
183 |
Metallodendrimers, Pd, a |
137 |
Metathesis, CM, RCM, ROM, ROMP |
155 |
cycloolefins, RCM, ROMP |
60 |
Olcfins |
95, 155 |
Ru(L)2Cl2(carbene), L = imadazoline-2-ylidenes |
112 |
Methane, combustion, oxidation, reforming |
164 |
sensors, a |
138, 140 |
Microscopy, STM, superconducting tips, Pt0.8/IrO.2, a |
138 |
Microwaves, -assisted, Sonogashira couplings |
163 |
for synthesis, of colloidal clusters, Ir, Pd, Pt, Rh, Ru |
11 |
of Ir(III) polypyridines, a |
93 |
Modulus of Rigidity, Ir, Pt, Rh, Pt-Ir, Pt-Rh |
74 |
Molecular Wires, with tris(β-diketonato)Ru(III) units |
2 |
MOS, Pd-gate, H2 sensor, a |
93 |
Multilayers, Co/Pt/Ni/Pt, X-ray study, a |
44 |
Nanoclusters, Pd, by brush-plating, a |
185 |
Nanocrystalline, Pd, H solubility |
166 |
Nanoparticles, Au-Pt, MeOH electrooxidation, a |
138 |
Pd, in Pd-polypyrrole composites, a |
42 |
Pt, on Ti support, nanostructured electrodes, a |
137 |
sonochemical preparation, Pd, Pt |
121 |
Nanostructures, Pt/Ti electrodes, a |
137 |
Naphthenes, reforming |
164 |
Neotame®, synthesis |
112 |
Nickel, NiPt, Ni3Pt, NiPt3, magnetic anisotropy, a |
96 |
Pd-Ni, in HSGFET, H2 sensor |
174 |
Ti-TiNi-TiRu, phase diagram |
84 |
Nitric Acid, manufacture, start-up operation |
34 |
nuclear fuel reprocessing waste, denitration, a |
43 |
Nitro Aromatics, hydrogenation, a |
43 |
Nitrobenzenes, hydrogenation |
164 |
Nitrogen Oxides, NO2, sensor, a |
185 |
NO, reduction, by propene, a |
138 |
scavengers in the body, Ru complexes |
62 |
NOx, lean, catalysts |
164 |
selective catalytic reduction, diesel emissions |
31, 176 |
sensors |
176 |
traps, in diesel emissions |
71, 176 |
NMR, 1H,(π-allyl)Pd+N, N ’-bis(phenylethyl)bispidine, a |
92 |
Ohmic Contacts, see Electrical Contacts |
|
Oils, sunflower seed, hydrogenation, a |
186 |
Olefins, with aryl bromides, Heck reaction, a |
138 |
metathesis |
95, 155 |
substituted, synthesis, a |
43 |
Optical Fibres, Pd/, Pt/WO3, H2 sensor, a |
42 |
Ores, sulfide Cu ores, recovery of Os-187 |
132 |
Osmium, Os-187, recovery from sulfide Cu ores |
132 |
Osmium Complexes, [Cp*2OsCl]2[OsCl6], formation, a |
92 |
[(η6-Cy)OsCl(L)](SbF6), L = (S )-BINAP,(S>BINPO, a |
140 |
luminescence, a |
93, 137 |
[Os(C8H8Br)]4, + arylboronic acids, Suzuki coupling, a |
184 |
Os(IV) homoleptic functionalised aryls, a |
184 |
[OsO2(SO3)2(H2O)]2− extraction with trialkylamine |
132 |
+ NH4OH – (NH4)2SO4 – H2O, formation and storage |
132 |
[{(RO)2PS2}3OsII”–OsII{S2P(RO)2}3]2−, synthesis, a |
136 |
[{(RO)2PS2}3, OsIII-OsII{S2P(RO)2}3], synthesis, a |
136 |
[{(RO)2PS2{3OsIV-OsIV{S2P(RO)2}3]2+, synthesis, a |
136 |
Oxidation, aerobic, alcohols |
15 |
alcohols |
94, 112, 139, 154 |
aldehydes |
154 |
benzene, a |
184 |
CH4 |
164 |
CO, TWCs |
164 |
electro-, MeOH, a |
44, 96, 138, 140 |
HCOOH, a |
137 |
Oxygen, in exhaust gas, sensor |
176 |
generation, from H2O, a |
42 |
with H2, H2O2 generation, a |
186 |
reduction, on Pt alloy catalysts, for SPE-DMFCs, a |
140 |
Palladium, clusters, H solubility |
166 |
colloidal clusters |
11 |
colloids, immobilised |
154 |
electroless plating, a |
137 |
films, by CFD |
14, 185 |
H interstitial location |
130 |
H isotope diffusion |
130 |
H solubility |
114, 166 |
interaction with H2 |
131 |
lattice defects |
114, 166 |
membranes, a |
137, 186 |
nanoclusters, by brush-plating, a |
185 |
nanocrystalline, H solubility |
166 |
nanoparticles |
121 |
in Pd-polypyrrole composites, a |
42 |
Pd2+/C powder, H2 storage electrodes, a |
92 |
Pd40Cu30Ni10P20, bulk glass, crystallisation of, a |
136 |
Pd cluster/polymer composites, preparation, a |
41 |
Pd films, for studying electroless Ni plating, a |
42 |
Pd-gate MOS, H2 sensor, a |
93 |
Pd-polypyrrole composite thin films, a |
42 |
Pd/Al2O3, H solubility |
166 |
Pd/Ge/Ti/Pt ohmic contacts, on GaAs, a |
44 |
Pd/MOx H solubility |
166 |
Pd/SiO2 spheres, synthesis |
174 |
Pd/SnO2, H2 sensor, a |
185 |
Pd/WO3 optical fibres, H2 sensor, a |
42 |
Palladium Alloys, Ag-Pd pastes, for MLC devices, a |
96 |
H interstitial location |
130 |
H isotope diffusion |
130 |
H solubility |
114, 166 |
interaction with H2 |
131 |
lattice defects |
114, 166 |
membranes |
131 |
Pd0.97Alm0.3, oxidised, H absorption, desorption |
166 |
Pd4Cu6, PdCu12, PdCu(111), interaction with H2, a |
136 |
Pd77Ag23, H absorption, desorption |
130 |
Pd80-Pt20, H-induced phase separation |
166 |
Pd-Ag, Pd-Ni, Pd-Pt, Pd-Rh, Pd-Si, H solubility |
114 |
Pd-Al, Pd-Mg, internal oxidation, H solubility |
166 |
|
Pd-Er-H, Pd-Mo-H, Pd-Ta-H |
130 |
Pd-Ni, in HSGFET, H2 sensor |
174 |
Pd-Rh, D solubility, resistance, a |
41 |
H-induced phase separation |
166 |
PdVCu(110), surfaces, formation, modelling of, a |
41 |
Palladium Complexes, (η-allyl)Pd + N, N ’-bis(phenylethyl)bispidine, 1H NMR, a |
92 |
bis(acetylacetonato)Pd(II), in Pd cluster/polymer, a |
41 |
η-2-methylallyl(cyclopentadienyl)Pd(II), for CFD |
14, 185 |
1, 3-[Cl(Et3P)2PdC≡]2-5-[(iPr)3SiC≡C]C6H3, a |
137 |
1, 3, 5-[Cl(Et3P)2PdC≡C]3C6H3, a |
137 |
[CoxPdy(CN)zCUv(CH2nH4n+2, On+1K1], electrolyte, a |
92 |
K2PdCl4, + polymer-supported dibenzo-18-crown-6, a |
92 |
trans -L2PdI2, L = heterocyclic carbene, a |
184 |
[Pd2(1, 8-dpmn)2(RNC)2]−2, [Pd2(1, 8-dpmn)(RNC)4]2− a |
184 |
Pd(2-thpy)2, photophysical properties, a |
93 |
Pd(II) hexafluoroacetylacetonate, for CFD, a |
185 |
Pd(II)(en), sequence-selective molecular pinch, a |
136 |
Palladium Compounds, PdD, D absorption, desorption, a |
184 |
PdO-modified SnO2-Fe2O3, CO sensor, a |
93 |
Paraffins, reforming |
164 |
Pastes, Ag-Pd, for MLC devices, a |
96 |
Patents |
45–48, 97–100, 141–144, 188–190 |
Peptides, α-helical, with Pd(II)(en), a |
136 |
pH, sensor system, a |
42 |
Phase Diagrams, Au-Pt-Sn, a |
92 |
Ti-TiNi-TiRu |
84 |
Phenols, amination |
154 |
C-allylated, synthesis, a |
95 |
from 2-cyclohexen-l-ol, a |
94 |
telomerisation, a |
95 |
Phosphorescence, Ir(III) polypyridines, a |
93 |
Photocatalysis, Pt/TiO2, benzene oxidation, a |
184 |
Photoconversion, a |
42, 93, 137, 184–185 |
Photoelectrolysis, H2O, by AlGaAs/Si RuO2/Ptblack, a |
42 |
Photoproperties, [(COD)Pt(R)2], photoreactivity, a |
137 |
Pd(2-thpy)2, Pt(2-thpy)2, low temperature, a Ru(bpy)3 DNA-polyaniline, a |
93 |
Ru(bpy)3,2+ DNA-polyaniline, a |
185 |
Ru(bpy)32+ LB films, a |
185 |
Ru(bpy)32*-zeolite Y, -viologen-zeolite Y, a |
137 |
trans -[Ru(NH3)4(NO)nicotinamide]3+, IR, a |
93 |
Photoreactions, H2 evolution, from Ru(II) complex, a |
184 |
Ru bipyridine, artificial photosynthesis |
91 |
Photosynthesis, artificial, with Ru-Mn systems |
91 |
Plating, Pt, on Nafion, electrode, a |
185 |
see also Electrodeposition |
|
“Platinum 2001” |
111 |
Platinum, Co/Pt/Ni/Pt multilayers, X-ray study, a |
44 |
colloidal clusters |
11 |
elastic, high temperature mechanical properties |
74 |
electrodes |
93, 137, 138, 176, 185, 187 |
interaction with H2 |
131 |
nanoparticles |
121, 137 |
Ni-CZHO/CaZro0.9, In0.1O3−a/Pt cell, in CH4, sensor, a |
140 |
Pd/Ge/Ti/Pt ohmic contacts, on GaAs, a |
44 |
Pt cluster/polymer composites, preparation, a |
41 |
Pt and SiO2 doped SnO2, NH3 sensor, a |
138 |
Pt/Ta + RuO2/n+-polySiSiO2/Si, contact system, a |
44 |
Pt/WO3 optical fibres, H2 sensor, a |
42 |
Platinum Alloys, Au-Pt, nanoparticles, a |
138 |
Au-Pt-Sn, phase diagram, AuPt2Sn4, Pt2Sn3, a |
92 |
interaction with H2 |
131 |
microelectrodes, Pt-Ir, isocitrate sensor, a |
93 |
NiPt, Ni3Pt, NiPt3, magnetic anisotropy, a |
96 |
Pd80-Pt20, H-induced phase separation |
166 |
Pd-Pt, H solubility |
114 |
Pt0.8/Ir0.2, superconducting tips, for STM, a |
138 |
Pt-Ir, Pt-Rh, elastic, high temperature mechanical properties |
74 |
Pt-Pd, in amperometric glucose sensors, a |
138 |
Platinum Complexes, cis-(C2H4)(l-ethyl-3-methyl-imidazol-2-ylidene)PtCl2, crystal structure, a |
41 |
[(COD)Pt(R)2], photoreactivity, a |
137 |
K2PtCl4, + polymer-supported dibenzo-18-crown-6, a |
92 |
[Pt2(1, 8-dpmn)2(RNC)2]2− [Pt2(1, 8-dpmn)(RNC)4]2−, a |
184 |
Pt(2-thpy)2, photophysical properties, a |
93 |
Pt acetylacetonate, availability and uses |
123 |
Pt azole-bridged complexes, cytotoxicity, a |
44 |
[PtCl(NCN-OH)], SO2 switching, a |
42 |
cis -[PtCl(Ph2SNH)(PMe2Ph)2][BF4], preparation, a |
41 |
[Pt(en)L]2+, L = bipy, phen, + phen, + phenanthrene, a |
136 |
Pt(II) bis(sulfonamides), a |
136 |
[Pt(Ph2SNH)4]CI2, H-bonding, crystal structure, a |
41 |
trans -[Pt(PR3)2H(FHF)], H-bonding, a |
41 |
(TIPS-4-MPD)-, (TIPS-6-MPD)Pt(Me)Cl,a |
41 |
[(TIPS-4-MPD)-, [(TIPS-6-MPD)Pt(Me)(olefin)]BF4, a |
41 |
Platinum Compounds, carboplatin, decomposition, a |
96 |
Pt aluminide, coatings |
124 |
Platinum Group Metals, compounds, in medicine |
62 |
high temperature mechanical properties |
74 |
Poisson’s Ratio, Ir, Pt, Rh, Pt-Ir, Pt-Rh |
74 |
Pollution Control, see Emission Control |
|
Polymerisation, acid-catalysed, of furfuryl alcohol |
164 |
catalytic, of cycloolefins |
60 |
co-, alternate, norbomadienes+CO, norbornenes+CO, a |
44 |
of cycloolefins |
60 |
in-situ, of methyl methacrylate |
82 |
ROMP |
60, 155 |
Ziegler-Natta, of cycloolefins |
60 |
Polymers, fibres, as supports for homogeneous catalysts |
112 |
Pd cluster/polymer composites, preparation, a |
41 |
Pd-polypyrrole composite thin films, a |
42 |
polyketones, by alternate copolymerisation, a |
44 |
poly(MMA), star-shaped, synthesis |
82 |
Pt cluster/polymer composites, preparation, a |
41 |
Ru carbenes/polystyrene-divinylbenzene |
155 |
[Ru(Ph2phen)2DCbpy]2+7polymer, pH sensor, a |
42 |
support for, dibenzo-18-crown-6,+K2PdCl4,+K2PtCl4, a |
92 |
Propene, for reduction of NO, a |
138 |
Redox, surface processes, RuO2(111)/H2O interface, a |
137 |
Reduction, asymmetric, of acetophenone |
59 |
NO, by propene, a |
138 |
Reforming, CH4, naphthenes, paraffins |
164 |
Resistance Thermometers, RuO2-based, a |
185 |
Resistivity, Rh, with C impurities, a |
136 |
Resistors, RuO2, a |
185 |
Rhodium, colloidal clusters |
11 |
elastic, high temperature mechanical properties |
74 |
metallisation, on C fibre microelectrodes |
183 |
microelectrodes, Rh-C fibre |
183 |
resistivity, with C impurities, a |
136 |
Rh/SiO2, sol-gel preparation, a |
186 |
Rhodium Bicentenary Competition |
59, 129 |
Rhodium Alloys, Pd-Rh, D solubility, resistance, a |
41 |
H-induced phase separation |
166 |
H solubility |
114 |
Pt-Rh, elastic, high temperature mechanical properties |
74 |
Rhodium Complexes, Rh carbonyls, “ship-in-bottle”, a |
136 |
Rubber, nitrile-butadiene, hydrogenation, a |
95 |
Ruthenium, anisotropic etching, for DRAM, a |
96 |
colloidal clusters |
11 |
Ru/TiN/p -Si/Si, contact system, a |
187 |
Ru/p-InP(100) heterostructures, a |
140 |
Ruthenium Alloys, Ti-TiNi-TiRu, phase diagram |
84 |
Ruthenium Complexes, in medicine |
62 |
[Cp*2RuCl2]2+, formation, a |
92 |
Cp*Ru(COD)Cl, reaction with phenylacetylenes, a |
184 |
cytochrome c 3-viologen-Ru(II) triad, a |
184 |
Iluminescence, a |
93, 137 |
molecular wires, tris(β-diketonato)Ru(III) units |
2 |
photoproperties |
91, 93, 137, 184, 185 |
Ru bipyridine, artificial photosynthesis |
91 |
Ru carbenes |
112, 115, 184 |
Ru terpyridines, with dithiolenes, a |
92 |
Ru(II) ketoaminates, antibacterial agents, a |
187 |
Ru(II) phenanthrolines + aryldiazopentanedione, a |
44 |
Ru(II) polypyridyls, pH sensor system, a |
42 |
Ru(II) Schiff bases, antifungal activity, a |
96 |
[Ru(NH3)6]3+ for glucose sensor, a |
185 |
[Ru(Ph2phen)2DCbpy]2+/polymer, pH sensor, a |
42 |
Ru(PPh3)2(dcbipy)Cl2, as TiO2 sensitiser, a |
42 |
Ruthenium Compounds, CeRu2Si2, magnetism, a |
41 |
poly(3, 4-ethylenedioxythiophene) RuOx electrode, a |
140 |
Pt/Ta + RuO2/n++-polySiSiO2/Si. contact system, a |
44 |
RuO2(111)/H2O interface, surface redox processes, a |
137 |
RuO2, anisotropic etching, for DRAM, a |
96 |
in resistance thermometers, a |
185 |
RuOx/TiN/p -Si/Si, contact system, a |
187 |
RuSr2GdCu2O8, magnetism, a |
184 |
Sr(Ti1-x, Rux)O3, by sputtering, a |
187 |
Ta + RuO2/n++-polySiSiO2/Si, contact system, a |
44 |
Screen Printing, double-print Pt, for electrodes, a |
187 |
Selective Catalytic Reduction, NOx |
31, 176 |
Sensors, CH4, a |
140 |
CO, a |
93 |
glucose, a |
93, 138, 185 |
H2 |
42, 93, 174, 185 |
hydrazine |
183 |
isocitrate, a |
93 |
NH3, a |
138 |
NO2, a |
185 |
NOx |
176 |
O2, in exhaust gas |
176 |
pH, a |
42 |
“Ship-in-Bottle”, Rh carbonyls in faujasites, a |
136 |
Silicon, CeRu2Si2, magnetism, a |
41 |
Pt suicide formation, on Pt nanoparticles/SiO2, a |
94 |
SiO2, amorphous mesoporous, micelle templated |
102 |
in Pt doped SnO2, NH3 sensor, a |
138 |
Single Crystals, Ir, Ir-0.3%W, Ir-3%Re-2%Ru |
179 |
Sol-Gel, Rh/SiO2, preparation, a |
186 |
Solar Cells, Ru(PPh3)2(dcbipy)Cl2, as TiO2 sensitiser, a |
42 |
Sonochemistry, synthesis, of Pd, Pt nanoparticles |
121 |
Sonogashira Couplings, microwave-assisted |
163 |
Sputtering, Sr(Ti1−, Rux)O3, a |
187 |
Stille Couplings, Mel + TICs |
33 |
PdCl2, dppf |
22 |
Sulfur Oxides, SO2,, reaction with [PtCl(NCN-OH)], a |
42 |
Superconductivity, Pt0.8/Ir0.2 tips, for STM, a |
138 |
Suzuki Couplings, with ligandless Pd, a |
139 |
[Os(C8H8Br)]4 with arylboronic acids, a |
184 |
PdCl2dppf, triflates with arylboronic acids |
22 |
Pd-pyridylimine/amorphous mesoporous silica |
102 |
Pd-pyridylimine/micelle templated silica |
102 |
thermomorphic conditions, a |
43 |
Switches, SO2 triggered, [PtCl(NCN-OH)], a |
42 |
Telomerisation, C -allylated phenol synthesis, a |
95 |
Tetraazafulvalenes, amination, a |
186 |
Thiazepinones, synthesis |
69 |
Thin Films, Pd, opposing reagents CFD, a |
185 |
Pd-polypyrrole composites, electrosynthesis, a |
42 |
Sr(Ti1−x, Rux)O3, by sputtering, on SrTiO3(100), a |
187 |
see also Films |
|
Three-Way Catalysts |
50, 71, 164, 176 |
Tin, Au-Pt-Sn, phase diagram, AuPt2Sn4, Pt2Sn3, a |
92 |
Titanium, IMI 834, Pt aluminide coating |
124 |
Ti-TiNi-TiRu, phase diagram |
84 |
Ultrasound, HCOOH oxidation, on Pt electrode, a |
137 |
VOCs, emission control |
123 |
Voltammetry, stripping, CH4 determination, a |
138 |
Wacker Reactions, in sc-CO2, ROH/sc-CO2, a |
43 |
Water, for H2 generation, a |
43 |
for H2 and O2 generation, a |
42 |
Water Gas Shift Reaction, Pt/CeO2, on monoliths |
164 |
Young’s Modulus, Ir, Pt, Rh, Pt-Ir, Pt-Rh |
74 |