Skip to content
1887
Volume 54, Issue 1
  • ISSN: 0032-1400

Abstract

Loading

Article metrics loading...

/content/journals/10.1595/147106709X481372
2016-01-01
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/pmr/54/1/JMTR-54-1-Xiao.html?itemId=/content/journals/10.1595/147106709X481372&mimeType=html&fmt=ahah

References

  1. “Handbook of Homogeneous Hydrogenation”, eds. de Vries J. G., and Elsevier C. J. 3 volumes, Wiley-VCH, Weinheim, Germany, 2007 [Google Scholar]
  2. Ikariya T., and Gridnev I. D. Chem. Rec., 2009, 9, (2), 106 [Google Scholar]
  3. Therrien B. Coord. Chem. Rev., 2009, 253, (3–4), 493 [Google Scholar]
  4. Gaillard S., and Renaud J.-L. ChemSusChem, 2008, 1, (6), 505 [Google Scholar]
  5. Matharu D. S., Martins J. E. D., and Wills M. Chem. Asian J., 2008, 3, (8–9), 1374 [Google Scholar]
  6. Wang C., Wu X. F., and Xiao J. L. Chem. Asian J., 2008, 3, (10), 1750 [Google Scholar]
  7. Wu X. F., Mo J., Li X. H., Hyder Z., and Xiao J. L. Prog. Nat. Sci., 2008, 18, (6), 639 [Google Scholar]
  8. Morris R. H. Coord. Chem. Rev., 2008, 252, (21–22), 2381 [Google Scholar]
  9. Ikariya T., and Blacker A. J. Acc. Chem. Res., 2007, 40, (12), 1300 [Google Scholar]
  10. Wu X. F., and Xiao J. L. Chem. Commun., 2007, (24), 2449 [Google Scholar]
  11. Ikariya T., Murata K., and Noyori R. Org. Biomol. Chem., 2006, 4, (3), 393 [Google Scholar]
  12. Gladiali S., and Alberico E. Chem. Soc. Rev., 2006, 35, (3), 226 [Google Scholar]
  13. Samec J. S. M., Bäckvall J. E., Andersson P. G., and Brandt P. Chem. Soc. Rev., 2006, 35, (3), 237 [Google Scholar]
  14. Xiao J. L., Wu X. F., Zanotti-Gerosa A., and Hancock F. Chim. Oggi, 2005, 23, (5), 50 [Google Scholar]
  15. Clapham S. E., Hadzovic A., and Morris R. H. Coord. Chem. Rev., 2004, 248, (21–24), 2201 [Google Scholar]
  16. Everaere K., Mortreux A., and Carpentier J.-F. Adv. Synth. Catal., 2003, 345, (1–2), 67 [Google Scholar]
  17. Joó F. Acc. Chem. Res., 2002, 35, (9), 738 [Google Scholar]
  18. Saluzzo C., and Lemaire M. Adv. Synth. Catal., 2002, 344, (9), 915 [Google Scholar]
  19. Noyori R., Yamakawa M., and Hashiguchi S. J. Org. Chem., 2001, 66, (24), 7931 [Google Scholar]
  20. Palmer M. J., and Wills M. Tetrahedron: Asymmetry, 1999, 10, (11), 2045 [Google Scholar]
  21. Noyori R., and Hashiguchi S. Acc. Chem. Res., 1997, 30, (2), 97 [Google Scholar]
  22. Krische M. J., and Sun Y. Acc. Chem. Res., 2007, 40, (12), 1237 [Google Scholar]
  23. Liu J. K., Wu X. F., Iggo J. A., and Xiao J. L. Coord. Chem. Rev., 2008, 252, (5–7), 782 [Google Scholar]
  24. You S.-L. Chem. Asian J., 2007, 2, (7), 820 [Google Scholar]
  25. Doering W. von E., and Young R. W. J. Am. Chem. Soc., 1950, 72, (1), 631 [Google Scholar]
  26. Fujii A., Hashiguchi S., Uematsu N., Ikariya T., and Noyori R. J. Am. Chem. Soc., 1996, 118, (10), 2521 [Google Scholar]
  27. Hashiguchi S., Fujii A., Takehara J., Ikariya T., and Noyori R. J. Am. Chem. Soc., 1995, 117, (28), 7562 [Google Scholar]
  28. Zhang Z. G., Rooshenas P., Hausmann H., and Schreiner P. R. Synthesis, 2009, (9), 1531 [Google Scholar]
  29. Zhang J., Blazecka P. G., Bruendl M. M., and Huang Y. J. Org. Chem., 2009, 74, (3), 1411 [Google Scholar]
  30. Wu Y. U., Lu C. J., Shan W. J., and Li X. S. Tetrahedron: Asymmetry, 2009, 20, (5), 584 [Google Scholar]
  31. Wu G. F., Zhu J. L., Ding Z. H., Shen Z. X., and Zhang Y. W. Tetrahedron Lett., 2009, 50, (4), 427 [Google Scholar]
  32. Watanabe M., and Murata K. J. Synth. Org. Chem., Jpn., 2009, 67, (4), 397 [Google Scholar]
  33. Mikhailine A., Lough A. J., and Morris R. H. J. Am. Chem. Soc., 2009, 131, (4), 1394 [Google Scholar]
  34. Meyer N., Lough A. J., and Morris R. H. Chem. Eur. J., 2009, 15, (22), 5605 [Google Scholar]
  35. Martins J. E. D., Clarkson G. J., and Wills M. Org. Lett., 2009, 11, (4), 847 [Google Scholar]
  36. Jiang R., Sun X. L., He W., Chen H., and Kuang Y. Q. Appl. Organomet. Chem., 2009, 23, (5), 179 [Google Scholar]
  37. Ito J., Ujiie S., and Nishiyama H. Organometallics, 2009, 28, (2), 630 [Google Scholar]
  38. Haraguchi N., Tsuru K., Arakawa Y., and Itsuno S. Org. Biomol. Chem., 2009, 7, (1), 69 [Google Scholar]
  39. Baratta W., Chelucci G., Magnolia S., Siega K., and Rigo P. Chem. Eur. J., 2009, 15, (3), 726 [Google Scholar]
  40. Zhou Z. Q., and Bian Y. J. Heteroatom Chem., 2008, 19, (7), 682 [Google Scholar]
  41. Zhang Y.-M., Liu P., Zhang H.-L., and Zhou Z.-M. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2008, 38, (7), 577 [Google Scholar]
  42. Zani L., Eriksson L., and Adolfsson H. Eur. J. Org. Chem., 2008, (27), 4655 [Google Scholar]
  43. Sandoval C. A., Li Y. H., Ding K. L., and Noyori R. Chem. Asian J., 2008, 3, (10), 1801 [Google Scholar]
  44. Rueping M., and Antonchick A. P. Angew. Chem. Int. Ed., 2008, 47, (31), 5836 [Google Scholar]
  45. Paredes P., Diez J., and Gamasa M. P. Organometallics, 2008, 27, (11), 2597 [Google Scholar]
  46. Michalek F., Lagunas A., Jimeno C., and Pericàs M. A. J. Mater. Chem., 2008, 18, (39), 4692 [Google Scholar]
  47. Martins J. E. D., Morris D. J., Tripathi B., and Wills M. J. Organomet. Chem., 2008, 693, (23), 3527 [Google Scholar]
  48. Madrigal C. A., García-Fernández A., Gimeno J., and Lastra E. J. Organomet. Chem., 2008, 693, (15), 2535 [Google Scholar]
  49. Liu J. T., Wu Y. N., Li X. S., and Chan A. S. C. J. Organomet. Chem., 2008, 693, (12), 2177 [Google Scholar]
  50. Liu D. L., Xie F., Zhao X. H., and Zhang W. B. Tetrahedron, 2008, 64, (16), 3561 [Google Scholar]
  51. Kang Q., Zhao Z.-A., and You S.-L. Org. Lett., 2008, 10, (10), 2031 [Google Scholar]
  52. Heiden Z. M., Gorecki B. J., and Rauchfuss T. B. Organometallics, 2008, 27, (7), 1542 [Google Scholar]
  53. Guillarme S., Nguyen T. X. M., and Saluzzo C. Tetrahedron: Asymmetry, 2008, 19, (12), 1450 [Google Scholar]
  54. Baratta W., Ballico M., Chelucci G., Siega K., and Rigo P. Angew. Chem. Int. Ed., 2008, 47, (23), 4362 [Google Scholar]
  55. Wettergren J., Zaitsev A. B., and Adolfsson H. Adv. Synth. Catal., 2007, 349, (17–18), 2556 [Google Scholar]
  56. Quintard A., Darbost U., Vocanson F., Pellet-Rostaing S., and Lemaire M. Tetrahedron: Asymmetry, 2007, 18, (16), 1926 [Google Scholar]
  57. Huang X. H., and Ying J. Y. Chem. Commun., 2007, (18), 1825 [Google Scholar]
  58. Enthaler S., Hagemann B., Bhor S., Anilkumar G., Tse M. K., Bitterlich B., Junge K., Erre G., and Beller M. Adv. Synth. Catal., 2007, 349, (6), 853 [Google Scholar]
  59. Cheung F. K., Lin C. X., Minissi F., Crivillé A. L., Graham M. A., Fox D. J., and Wills M. Org. Lett., 2007, 9, (22), 4659 [Google Scholar]
  60. Chen G., Xing Y., Zhang H., and Gao J.-X. J. Mol. Catal. A: Chem., 2007, 273, (1–2), 284 [Google Scholar]
  61. Baratta W., Chelucci G., Herdtweck E., Magnolia S., Siega K., and Rigo P. Angew. Chem. Int. Ed., 2007, 46, (40), 7651 [Google Scholar]
  62. Ahlford K., Zaitsev A. B., Ekström J., and Adolfsson H. Synlett, 2007, (16), 2541 [Google Scholar]
  63. Wisman R. V., de Vries J. G., Deelman B.-J., and Heeres H. J. Org. Process Res. Dev., 2006, 10, (3), 423 [Google Scholar]
  64. Wang C., Li C. Q., Wu X. F., Pettman A., and Xiao J. L. Angew. Chem. Int. Ed., 2009, 48, (35), 6524 [Google Scholar]
  65. Wu X. F., Liu J. K., Di Tommaso D., Iggo J. A., Catlow C. R. A., Bacsa J., and Xiao J. L. Chem. Eur. J., 2008, 14, (25), 7699 [Google Scholar]
  66. Wu X. F., Li X. H., Zanotti-Gerosa A., Pettman A., Liu J. K., Mills A. J., and Xiao J. L. Chem. Eur. J., 2008, 14, (7), 2209 [Google Scholar]
  67. Wu X. F., Corcoran C., Yang S. J., and Xiao J. L. ChemSusChem, 2008, 1, (1–2), 71 [Google Scholar]
  68. Wu X. F. “Asymmetric Transfer Hydrogenation and Transfer Hydrogenation in Water”, PhD Thesis, Department of Chemistry, The University of Liverpool, UK, 2007 [Google Scholar]
  69. Wu X. F., Liu J. K., Li X. H., Zanotti-Gerosa A., Hancock F., Vinci D., Ruan J. W., and Xiao J. L. Angew. Chem. Int. Ed., 2006, 45, (40), 6718 [Google Scholar]
  70. Wu X. F., Li X. H., McConville M., Saidi O., and Xiao J. L. J. Mol. Catal. A: Chem., 2006, 247, (1–2), 153 [Google Scholar]
  71. Li X. H., Blacker J., Houson I., Wu X. F., and Xiao J. L. Synlett, 2006, (8), 1155 [Google Scholar]
  72. Wu X. F., Vinci D., Ikariya T., and Xiao J. L. Chem. Commun., 2005, (35), 4447 [Google Scholar]
  73. Wu X. F., Li X. G., King F., and Xiao J. L. Angew. Chem. Int. Ed., 2005, 44, (22), 3407 [Google Scholar]
  74. Wu X. F., Li X. G., Hems W., King F., and Xiao J. L. Org. Biomol. Chem., 2004, 2, (13), 1818 [Google Scholar]
  75. Li X. G., Wu X. F., Chen W. P., Hancock F. E., King F., and Xiao J. L. Org. Lett., 2004, 6, (19), 3321 [Google Scholar]
  76. Li J., Zhang Y. M., Han D. F., Gao Q., and Li C. J. Mol. Catal. A: Chem., 2009, 298, (1–2), 31 [Google Scholar]
  77. Creutz C., and Chou M. H. J. Am. Chem. Soc., 2009, 131, (8), 2794 [Google Scholar]
  78. Cortez N. A., Aguirre G., Parra-Hake M., and Somanathan R. Tetrahedron Lett., 2009, 50, (19), 2228 [Google Scholar]
  79. Akagawa K., Akabane H., Sakamoto S., and Kudo K. Tetrahedron: Asymmetry, 2009, 20, (4), 461 [Google Scholar]
  80. Zhou Z. Q., and Wu L. H. Catal. Commun., 2008, 9, (15), 2539 [Google Scholar]
  81. Zeror S., Collin J., Fiaud J.-C., and Zouioueche L. A. Adv. Synth. Catal., 2008, 350, (1), 197 [Google Scholar]
  82. Xu Z., Mao J. C., Zhang Y. W., Guo J., and Zhu J. L. Catal. Commun., 2008, 9, (5), 618 [Google Scholar]
  83. Schlatter A., and Woggon W.-D. Adv. Synth. Catal., 2008, 350, (7–8), 995 [Google Scholar]
  84. Liu J. T., Zhou Y. G., Wu Y. N., Li X. S., and Chan A. S. C. Tetrahedron: Asymmetry, 2008, 19, (7), 832 [Google Scholar]
  85. Himeda Y., Onozawa-Komatsuzaki N., Miyazawa S., Sugihara H., Hirose T., and Kasuga K. Chem. Eur. J., 2008, 14, (35), 11076 [Google Scholar]
  86. Cortez N. A., Aguirre G., Parra-Hake M., and Somanathan R. Tetrahedron: Asymmetry, 2008, 19, (11), 1304 [Google Scholar]
  87. Arakawa Y., Chiba A., Haraguchi N., and Itsuno S. Adv. Synth. Catal., 2008, 350, (14–15), 2295 [Google Scholar]
  88. Alza E., Bastero A., Jansat S., and Pericàs M. A. Tetrahedron: Asymmetry, 2008, 19, (3), 374 [Google Scholar]
  89. Akagawa K., Akabane H., Sakamoto S., and Kudo K. Org. Lett., 2008, 10, (10), 2035 [Google Scholar]
  90. Ahlford K., Lind J., Mäler L., and Adolfsson H. Green Chem., 2008, 10, (8), 832 [Google Scholar]
  91. Zhou H.-F., Fan Q.-H., Huang Y.-Y., Wu L., He Y.-M., Tang W.-J., Gu L.-Q., and Chan A. S. C. J. Mol. Catal. A: Chem., 2007, 275, (1–2), 47 [Google Scholar]
  92. Li L., Wu J. S., Wang F., Liao J., Zhang H., Lian C. X., Zhu J., and Deng J. G. Green Chem., 2007, 9, (1), 23 [Google Scholar]
  93. Cortez N. A., Aguirre G., Parra-Hake M., and Somanathan R. Tetrahedron Lett., 2007, 48, (25), 4335 [Google Scholar]
  94. Canivet J., Süss-Fink G., and Štepnicka P. Eur. J. Inorg. Chem., 2007, (30), 4736 [Google Scholar]
  95. Canivet J., and Süss-Fink G. Green Chem., 2007, 9, (4), 391 [Google Scholar]
  96. Zeror S., Collin J., Fiaud J.-C., and Zouioueche L. A. J. Mol. Catal. A: Chem., 2006, 256, (1–2), 85 [Google Scholar]
  97. Xing Y., Chen J.-S., Dong Z.-R., Li Y.-Y., and Gao J.-X. Tetrahedron Lett., 2006, 47, (26), 4501 [Google Scholar]
  98. Wu J. S., Wang F., Ma Y. P., Cui X. C., Cun L. F., Zhu J., Deng J. G., and Yu B. L. Chem. Commun., 2006, (16), 1766 [Google Scholar]
  99. Rossin A., Kovács G., Ujaque G., Lledós A., and Joó F. Organometallics, 2006, 25, (21), 5010 [Google Scholar]
  100. Pirrung M. C. Chem. Eur. J., 2006, 12, (5), 1312 [Google Scholar]
  101. Matharu D. S., Morris D. J., Clarkson G. J., and Wills M. Chem. Commun., 2006, (30), 3232 [Google Scholar]
  102. Li B.-Z., Chen J.-S., Dong Z.-R., Li Y.-Y., Li Q.-B., and Gao J.-X. J. Mol. Catal. A: Chem., 2006, 258, (1–2), 113 [Google Scholar]
  103. Jiang L., Wu T.-F., Chen Y.-C., Zhu J., and Deng J.-G. Org. Biomol. Chem., 2006, 4, (17), 3319 [Google Scholar]
  104. Jiang D. M., Gao J. S., Yang Q. H., Yang J., and Li C. Chem. Mater., 2006, 18, (25), 6012 [Google Scholar]
  105. Cortez N. A., Rodríguez-Apodaca R., Aguirre G., Parra-Hake M., Cole T., and Somanathan R. Tetrahedron Lett., 2006, 47, (48), 8515 [Google Scholar]
  106. Arakawa Y., Haraguchi N., and Itsuno S. Tetrahedron Lett., 2006, 47, (19), 3239 [Google Scholar]
  107. Wang F., Liu H., Cun L. F., Zhu J., Deng J. G., and Jiang Y. Z. J. Org. Chem., 2005, 70, (23), 9424 [Google Scholar]
  108. Mao J. C., Wan B. S., Wu F., and Lu S. W. Tetrahedron Lett., 2005, 46, (43), 7341 [Google Scholar]
  109. Liu P.-N., Gu P.-M., Deng J.-G., Tu Y.-Q., and Ma Y.-P. Eur. J. Org. Chem., 2005, (15), 3221 [Google Scholar]
  110. Letondor C., Humbert N., and Ward T. R. PNAS, 2005, 102, (13), 4683 [Google Scholar]
  111. Canivet J., Labat G., Stoeckli-Evans H., and Süss-Fink G. Eur. J. Inorg. Chem., 2005, (22), 4493 [Google Scholar]
  112. Liu P. N., Deng J. G., Tu Y. Q., and Wang S. H. Chem. Commun., 2004, (18), 2070 [Google Scholar]
  113. Ma Y. P., Liu H., Chen L., Cui X., Zhu J., and Deng J. E. Org. Lett., 2003, 5, (12), 2103 [Google Scholar]
  114. Himeda Y., Onozawa-Komatsuzaki N., Sugihara H., Arakawa H., and Kasuga K. J. Mol. Catal. A: Chem., 2003, 195, (1–2), 95 [Google Scholar]
  115. Rhyoo H. Y., Park H.-J., Suh W. H., and Chung Y. K. Tetrahedron Lett., 2002, 43, (2), 269 [Google Scholar]
  116. Thorpe T., Blacker J., Brown S. M., Bubert C., Crosby J., Fitzjohn S., Muxworthy J. P., and Williams J. M. J. Tetrahedron Lett., 2001, 42, (24), 4041 [Google Scholar]
  117. Rhyoo H. Y., Park H.-J., and Chung Y. K. Chem. Commun., 2001, (20), 2064 [Google Scholar]
  118. Bubert C., Blacker J., Brown S. M., Crosby J., Fitzjohn S., Muxworthy J. P., Thorpe T., and Williams J. M. J. Tetrahedron Lett., 2001, 42, (24), 4037 [Google Scholar]
  119. Poth T., Paulus H., Elias H., Dücker-Benfer C., and van Eldik R. Eur. J. Inorg. Chem., 2001, (5), 1361 [Google Scholar]
  120. Li X. G., Chen W. P., Hems W., King F., and Xiao J. L. Tetrahedron Lett., 2004, 45, (5), 951 [Google Scholar]
  121. Li X. G., Chen W. P., Hems W., King F., and Xiao J. L. Org. Lett., 2003, 5, (24), 4559 [Google Scholar]
  122. Haack K.-J., Hashiguchi S., Fujii A., Ikariya T., and Noyori R. Angew. Chem. Int. Ed., 1997, 36, (3), 285 [Google Scholar]
  123. Mashima K., Abe T., and Tani K. Chem. Lett., 1998, (12), 1199 [Google Scholar]
  124. Blacker A. J., and Mellor B. J. Zeneca Ltd, ‘Transfer Hydrogenation Process and Catalyst’, World Appl. WO98/42643 [Google Scholar]
  125. Blacker J., Martin J., and Schmidt E. ‘Scale-Up Studies in Asymmetric Transfer Hydrogenation’, in “Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions”, eds. Blaser H. U., Wiley-VCH, Weinheim, Germany, 2004, pp. 201216 [Google Scholar]
  126. Tanaka K., Katsurada M., Ohno F., Shiga Y., Oda M., Miyagi M., Takehara J., and Okano K. J. Org. Chem., 2000, 65, (2), 432 [Google Scholar]
  127. Miyagi M., Takehara J., Collet S., and Okano K. Org. Process Res. Dev., 2000, 4, (5), 346 [Google Scholar]
  128. Samec J. S. M., Ell A. H., Åberg J. B., Privalov T., Eriksson L., and Bäckvall J. E. J. Am. Chem. Soc., 2006, 128, (44), 14293 [Google Scholar]
  129. Heiden Z. M., and Rauchfuss T. B. J. Am. Chem. Soc., 2009, 131, (10), 3593 [Google Scholar]
  130. Handgraaf J.-W., and Meijer E. J. J. Am. Chem. Soc., 2007, 129, (11), 3099 [Google Scholar]
  131. Heiden Z. M., and Rauchfuss T. B. J. Am. Chem. Soc., 2007, 129, (46), 14303 [Google Scholar]
  132. Heiden Z. M., and Rauchfuss T. B. J. Am. Chem. Soc., 2006, 128, (40), 13048 [Google Scholar]
  133. Arita S., Koike T., Kayaki Y., and Ikariya T. Angew. Chem. Int. Ed., 2008, 47, (13), 2447 [Google Scholar]
/content/journals/10.1595/147106709X481372
Loading
/content/journals/10.1595/147106709X481372
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error