Skip to content
1887
Volume 55, Issue 3
  • ISSN: 0032-1400

Abstract

Loading

Article metrics loading...

/content/journals/10.1595/147106711X577274
2011-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pmr/55/3/PMR-55-3-Oosthuizen.html?itemId=/content/journals/10.1595/147106711X577274&mimeType=html&fmt=ahah

References

  1. Adams, C. Top. Catal., 2009, 52, (8), 924 [Google Scholar]
  2. Centi G., and Perathoner, S. Catal. Today, 2008, 138, (1–2), 69 [Google Scholar]
  3. Auer, E., Freund, A., Pietsch J., and Tacke, T. Appl. Catal.A: Gen., 1998, 173, (2), 259 [Google Scholar]
  4. Serp, P., Corrias M., and Kalck, P. Appl. Catal. A: Gen., 2003, 253, (2), 337 [Google Scholar]
  5. Mondal, K. C., Cele, L. M., Witcomb M. J., and Coville, N. J. Catal. Commun., 2008, 9, (4), 494 [Google Scholar]
  6. Pham-Huu, C., Keller, N., Charbonniere, L. J., Ziessel R., and Ledoux, M. J. Chem. Commun., 2000, (19), 1871 [Google Scholar]
  7. Martin-Gullon, I., Vera, J., Conesa, J. A., González J. L., and Merino, C. Carbon, 2006, 44, (8), 1572 [Google Scholar]
  8. Iijima, S. Nature, 1991, 354, (6348), 56 [Google Scholar]
  9. Schlögl R., and Abd Hamid S. B. Angew. Chem. Int. Ed., 2004, 43, (13), 1628 [Google Scholar]
  10. Durgun, E., Dag, S., Ciraci S., and Gülseren, O. J. Phys.Chem. B, 2004, 108, (2), 575 [Google Scholar]
  11. Yu Stakeev A., and Kustov, L. M. Appl. Catal. A: Gen., 1999, 188, (1–2), 3 [Google Scholar]
  12. Chambers, A., Nemes, T., Rodriguez N. M., and Baker R. T. K. J. Phys. Chem. B, 1998, 102, (12), 2251 [Google Scholar]
  13. Park C., and Baker R. T. K. J. Phys. Chem. B, 1998, 102, (26), 5168 [Google Scholar]
  14. Ebbesen T. W., and Ajayan, P. M. Nature, 1992, 358, (6383), 220 [Google Scholar]
  15. Huang, H., Kajiura, H., Tsutsui, S., Hirano, Y., Miyakoshi, M., Yamada A., and Ata, M. Chem. Phys. Lett., 2001, 343, (1–2), 7 [Google Scholar]
  16. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tománek, D., Fischer J. E., and Smalley, R. E. Science, 1996, 273, (5274), 483 [Google Scholar]
  17. Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y.-S., Lee, T. R., Colbert D. T., and Smalley, R. E. Science, 1998, 280, (5367), 1253 [Google Scholar]
  18. José-Yacamán, M., Miki-Yoshida, M., Rendón L., and Santiesteban, J. G. Appl. Phys. Lett., 1993, 62, (6), 657 [Google Scholar]
  19. Dupuis, A.-C. Prog. Mater. Sci., 2005, 50, (8), 929 [Google Scholar]
  20. Amelinckx, S., Zhang, X. B., Bernaerts, D., Zhang, X. F., Ivanov V., and Nagy, J. B. Science, 1994, 265, (5172), 635 [Google Scholar]
  21. Park, J.-B., Choi, G.-S., Cho, Y.-S., Hong, S.-Y., Kim, D., Choi, S.-Y., Lee J.-H., and Cho, K.-I. J. Cryst. Growth, 2002, 244, (2), 211 [Google Scholar]
  22. Nyamori, V. O., Mhlanga S. D., and Coville, N. J. J. Organomet. Chem., 2008, 693, (13), 2205 [Google Scholar]
  23. Saito, R., Dresselhaus G., and Dresselhaus, M. S. Physical Properties of Carbon Nanotubes”, Imperial College Press, London, UK, 1998 [Google Scholar]
  24. Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications”, Imperial College Press, London, UK, 2004 [Google Scholar]
  25. Dresselhaus, M. S., Dresselhaus G., and Eklund, P. C. Science of Fullerenes and Carbon Nanotubes”, Academic Press, San Diego, California, USA, 1996 [Google Scholar]
  26. Carbon Nanotubes: Properties and Applications”, ed. O’Connell, M. J. CRC Press, Boca Raton, Florida, USA, 2006 [Google Scholar]
  27. Endo, M., Hayashi, T., Kim, Y. A., Terrones M., and Dresselhaus, M. S. Phil. Trans. R. Soc. Lond. A, 2004, 362, (1823), 2223 [Google Scholar]
  28. Moisala, A., Nasibulin A. G., and Kauppinen, E. I. J. Phys.: Condens. Matter, 2003, 15, (42), S3011 [Google Scholar]
  29. Nyamori V. O., and Coville, N. J. Organometallics, 2007, 26, (16), 4083 [Google Scholar]
  30. Jain, D., Winkelm A., and Wilhelm, R. Small, 2006, 2, (6), 752 [Google Scholar]
  31. Liu, J., Shao, M., Xie, Q., Kong, L., Yu W., and Qian, Y. Carbon, 2003, 41, (11), 2101 [Google Scholar]
  32. Laskoski, M., Steffen, W., Morton J. G. M., Smith M. D., and Bunz U. H. F. J. Am. Chem. Soc., 2002, 124, (46), 13814 [Google Scholar]
  33. El Hamaoui B., Zhi, L., Wu, J., Kolb U., and Müllen, K. Adv.Mater., 2005, 17, (24), 2957 [Google Scholar]
  34. Zhi, L., Gorelik, T., Friedlein, R., Wu, J., Kolb, U., Salaneck W. R., and Müllen, K. Small, 2005, 1, (8–9), 798 [Google Scholar]
  35. Wu, J., El Hamaoui B., Li, J., Zhi, L., Kolb U., and Müllen, K. Small, 2005, 1, (2), 210 [Google Scholar]
  36. Liu, S., Tang, X., Mastai, Y., Felner I., and Gedanken, A. J. Mater. Chem., 2000, 10, (11), 2502 [Google Scholar]
  37. Wu, C., Zhu, X., Ye, L., OuYang, C., Hu, S., Lei L., and Xie, Y. Inorg. Chem., 2006, 45, (21), 8543 [Google Scholar]
  38. Dosa, P. I., Erben, C., Iyer, V. S., Vollhardt K. P. C., and Wasser, I. M. J. Am. Chem. Soc., 1999, 121, (44), 10430 [Google Scholar]
  39. Iyer, V. S., Vollhardt K. P. C., and Wilhelm, R. Angew.Chem. Int. Ed., 2003, 42, (36), 4379 [Google Scholar]
  40. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications”, eds. Jorio, A., Dresselhaus G., and Dresselhaus, M. S. Springer, Berlin, Heidelberg, Germany, 2008 [Google Scholar]
  41. Machado, B. F., Gomes, H. T., Serp, P., Kalck P., and Faria, J. L. ChemCatChem., 2010, 2, (2), 190 [Google Scholar]
  42. Amadou, J., Chizari, K., Houllé, M., Janowska, I., Ersen, O., Bégin D., and Pham-Huu, C. Catal. Today, 2008, 138, (1–2), 62 [Google Scholar]
  43. Zhang, A. M., Dong, J. L., Xu, Q. H., Rhee H. K., and Li, X. L. Catal. Today, 2004, 93–95, 347 [Google Scholar]
  44. Wang, S. J., Zhu, W. X., Liao, D. W., Ng C. F., and Au, C. T. Catal. Today, 2004, 93–95, 711 [Google Scholar]
  45. Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts”, ed. Stiles, A. B. Butterworth-Heinemann, Stoneham, Massachusetts, USA, 1987 [Google Scholar]
  46. Inoue, M., Otsu, H., Kominami H., and Inui, T. Ind. Eng.Chem. Res., 1996, 35, (1), 295 [Google Scholar]
  47. Nhut, J.-M., Vieira, R., Pesant, L., Tessonnier, J.-P., Keller, N., Ehret, G., Pham-Huu C., and Ledoux, M. J. Catal. Today, 2002, (1), 76, 11 [Google Scholar]
  48. Understanding Carbon Nanotubes: From Basics to Applications”, Lecture Notes in Physics, Vol. 677, eds. Loiseau, A., Launois, P., Petit, P., Roche, S., and Salvetat, J.-P. Springer-Verlag, Berlin, Heidelberg, 2006 [Google Scholar]
  49. Mintmire, J. W., Dunlap B. I., and White, C. T. Phys. Rev.Lett., 1992, 68, (5), 631 [Google Scholar]
  50. Duca, D., Ferrante F., and La Manna G. J. Phys. Chem. C, 2007, 111, (14), 5402 [Google Scholar]
  51. Yu, M.-F., Lourie, O., Dyer, M. J., Moloni, K., Kelly T. F., and Ruoff, R. S. Science, 2000, 287, (5453), 637 [Google Scholar]
  52. Salvetat, J.-P., Briggs G. A. D., Bonard, J.-M., Bacsa, R. R., Kulik, A. J., Stöckli, T., Burnham N. A., and Forró, L. Phys. Rev. Lett., 1999, 82, (5), 944 [Google Scholar]
  53. Toebes, M. L., van Dillen J. A., and de Jong K. P. J. Mol.Catal. A: Chem., 2001, 173, (1–2), 75 [Google Scholar]
  54. Chiang, Y.-C., Lee C.-C., and Lee, C.-Y. Toxicol. Environ.Chem., 2009, 91, (8), 1413 [Google Scholar]
  55. Olivier, J.-H., Camerel, F., Ziessel, R., Retailleau, P., Amadou J., and Pham-Huu, C. New J. Chem., 2008, 32, (6), 920 [Google Scholar]
  56. Liang, X.-L., Dong, X., Lin G.-D., and Zhang, H.-B. Appl.Catal. B: Environ., 2009, 88, (3–4), 315 [Google Scholar]
  57. Cinke, M., Li, J., Chen, B., Cassell, A., Delzeit, L., Han J., and Meyyappan, M. Chem. Phys. Lett., 2002, 365, (1–2), 69 [Google Scholar]
  58. Ansón, A., Lafuente, E., Urriolabeitia, E., Navarro, R., Benito, A. M., Maser W. K., and Martínez, M. T. J. Alloys Compd., 2007, 436, (1–2), 294 [Google Scholar]
  59. Ponec, V. Appl. Catal. A: Gen., 1997, 149, (1), 27 [Google Scholar]
  60. Corma, A., Garcia H., and Leyva, A. J. Mol. Catal. A:Chem., 2005, 230, (1–2), 97 [Google Scholar]
  61. Yang, Q.-H., Hou, P.-X., Bai, S., Wang M.-Z., and Cheng, H.-M. Chem. Phys. Lett., 2001, 345, (1–2), 18 [Google Scholar]
  62. Musso, S., Porro, S., Vinante, M., Vanzetti, L., Ploeger, R., Giorcelli, M., Possetti, B., Trotta, F., Pederzolli C., and Tagliaferro, A. Diamond Relat. Mater., 2007, 16, (4–7), 1183 [Google Scholar]
  63. Janowska, I., Winé, G., Ledoux M.-J., and Pham-Huu, C. J. Mol. Catal. A: Chem., 2007, 267, (1–2), 92 [Google Scholar]
  64. Tessonnier, J.-P., Pesant, L., Ehret, G., Ledoux M. J., and Pham-Huu, C. Appl. Catal. A: Gen., 2005, 288, (1–2), 203 [Google Scholar]
  65. Domínguez-Domínguez, S., Berenguer-Murcia, Á., Pradhan, B. K., Linares-Solano Á., and Cazorla-Amorós, D. J. Phys. Chem. C, 2008, 112, (10), 3827 [Google Scholar]
  66. Anderson, J. A., Athawale, A., Imrie, F. E., McKenna, F.-M., McCue, A., Molyneux, D., Power, K., Shand M., and Wells R. P. K. J. Catal., 2010, 270, (1), 9 [Google Scholar]
  67. Díaz, E., Ordóñez S., and Vega, A. J. Colloid InterfaceSci., 2007, 305, (1), 7 [Google Scholar]
  68. Carbon Materials for Catalysis”, eds. Serp P., and Figueiredo, J. L. John Wiley and Sons, Hoboken, New Jersey, USA, 2009 [Google Scholar]
  69. van Steen E., and Prinsloo, F. F. Catal. Today, 2002, 71, (3–4), 327 [Google Scholar]
  70. Ang, L.-M., Hor T. S. A., Xu, G.-Q., Tung, C.-h., Zhao S., and Wang J. L. S. Chem. Mater., 1999, 11, (8), 2115 [Google Scholar]
  71. Qu L., and Dai, L. J. Am. Chem. Soc., 2005, 127, (31), 10806 [Google Scholar]
  72. Day, T. M., Unwin P. R., and Macpherson, J. V. Nano Lett., 2007, 7, (1), 51 [Google Scholar]
  73. Quinn, B. M., Dekker C., and Lemay, S. G. J. Am. Chem.Soc., 2005, 127, (17), 6146 [Google Scholar]
  74. Xia, W., Schlüter, O. F.-K., Liang, C., van den Berg M. W. E., Guraya M., and Muhler, M. Catal. Today, 2005, 102–103, 34 [Google Scholar]
  75. Yoon B., and Wai, C. M. J. Am. Chem. Soc., 2005, 127, (49), 17174 [Google Scholar]
  76. Ye, X. R., Lin Y., and Wai, C. M. Chem. Commun., 2003, (5), 642 [Google Scholar]
  77. Charlier, J.-C. Acc. Chem. Res., 2002, 35, (12), 1063 [Google Scholar]
  78. Niesz, K., Siska, A., Vesselényi, I., Hernadi, K., Méhn, D., Galbács, G., Kónya Z., and Kiricsi, I. Catal. Today, 2002, 76, (1), 3 [Google Scholar]
  79. Ago, H., Kugler, T., Cacialli, F., Salaneck, W. R., Shaffer M. S. P., Windle A. H., and Friend, R. H. J. Phys. Chem. B, 1999, 103, (38), 8116 [Google Scholar]
  80. Shaffer M. S. P., Fan X., and Windle, A. H. Carbon, 1998, 36, (11), 1603 [Google Scholar]
  81. Porro, S., Musso, S., Vinante, M., Vanzetti, L., Anderle, M., Trotta F., and Tagliaferro, A. Physica E, 2007, 37, (1–2), 58 [Google Scholar]
  82. Xing, Y., Li, L., Chusuei C. C., and Hull, R. V. Langmuir, 2005, 21, (9), 4185 [Google Scholar]
  83. Chen, J., Zhu, Z. H., Ma, Q., Li, L., Rudolph V., and Lu, G. Q. Catal. Today, 2009, 148, (1–2), 97 [Google Scholar]
  84. Yang, J., Wang, X., Wang, X., Jia R., and Huang, J. J. Phys.Chem. Solids, 2010, 71, (4), 448 [Google Scholar]
  85. Unger, E., Duesberg, G. S., Liebau, M., Graham, A. P., Seidel, R., Kreupl F., and Hoenlein, W. Appl. Phys. A: Mater. Sci. Process., 2003, 77, (6), 735 [Google Scholar]
  86. Guo D.-J., and Li, H.-L. J. Colloid Interface Sci., 2005, 286, (1), 274 [Google Scholar]
  87. Nhut, J.-M., Pesant, L., Tessonnier, J.-P., Winé, G., Guille, J., Pham-Huu C., and Ledoux, M.-J. Appl. Catal. A: Gen., 2003, 254, (2), 345 [Google Scholar]
  88. Wiley, B., Sun, Y., Mayers B., and Xia, Y. Chem. Eur. J., 2005, 11, (2), 454 [Google Scholar]
  89. D’Anna, V., Duca, D., Ferrante F., and La Manna G. Phys.Chem. Chem. Phys., 2009, 11, (20), 4077 [Google Scholar]
  90. Franklin, A. D., Smith, J. T., Sands, T., Fisher, T. S., Choi K.-S., and Janes, D. B. J. Phys. Chem. C, 2007, 111, (37), 13756 [Google Scholar]
  91. Dyke C. A., and Tour, J. M. J. Phys. Chem. A, 2004, 108, (51), 11151 [Google Scholar]
  92. Chen, R. J., Zhang, Y., Wang D., and Dai, H. J. Am. Chem.Soc., 2001, 123, (16), 3838 [Google Scholar]
  93. Chun, Y. S., Shin, J. Y., Song C. E., and Lee S.-g. Chem.Commun., 2008, (8), 942 [Google Scholar]
  94. Chen, X., Hou, Y., Wang, H., Cao Y., and He, J. J. Phys.Chem. C, 2008, 112, (22), 8172 [Google Scholar]
  95. Lee, C.-L., Wan C.-C., and Wang, Y.-Y. Adv. Funct. Mater., 2001, 11, (5), 344 [Google Scholar]
  96. Lee, C.-L., Huang, Y.-C., Kuo L.-C., and Lin, Y.-W. Carbon, 2007, 45, (1), 203 [Google Scholar]
  97. Karousis, N., Tsotsou, G.-E., Ragoussis N., and Tagmatarchis, N. Diamond Relat. Mater., 2008, 17, (7–10), 1582 [Google Scholar]
  98. Karousis, N., Tsotsou, G.-E., Evangelista, F., Rudolf, P., Ragoussis N., and Tagmatarchis, N. J. Phys. Chem. C, 2008, 112, (35), 13463 [Google Scholar]
  99. Zhang, Y., Gu, H., Suenaga K., and Iijima, S. Chem. Phys.Lett., 1997, 279, (5–6), 264 [Google Scholar]
  100. Golberg, D., Bando, Y., Han, W., Kurashima K., and Sato, T. Chem. Phys. Lett., 1999, 308, (3–4), 337 [Google Scholar]
  101. Maldonado, S., Morin S., and Stevenson, K. J. Carbon, 2006, 44, (8), 1429 [Google Scholar]
  102. Kim, D.-P., Lin, C. L., Mihalisin, T., Heiney P., and Labes, M. M. Chem. Mater., 1991, 3, (4), 686 [Google Scholar]
  103. An W., and Turner, C. H. J. Phys. Chem. C, 2009, 113, (17), 7069 [Google Scholar]
  104. Lee, C. J., Lyu, S. C., Kim, H.-W., Lee J. H., and Cho, K. I. Chem. Phys. Lett., 2002, 359, (1–2), 115 [Google Scholar]
  105. Nxumalo, E. N., Nyamori V. O., and Coville, N. J. J. Organomet. Chem., 2008, 693, (17), 2942 [Google Scholar]
  106. Han, W., Bando, Y., Kurashima K., and Sato, T. Chem.Phys. Lett., 1999, 299, (5), 368 [Google Scholar]
  107. Croy, J. R., Mostafa, S., Hickman, L., Heinrich H., and Cuenya, B. R. Appl. Catal. A: Gen., 2008, 350, (2), 207 [Google Scholar]
  108. Jordão, M. H., Simões V., and Cardoso, D. Appl. Catal. A:Gen., 2007, 319, 1 [Google Scholar]
  109. Fujikawa, T., Idei, K., Ebihara, T., Mizuguchi H., and Usui, K. Appl. Catal. A: Gen., 2000, 192, (2), 253 [Google Scholar]
  110. Pawelec, B., La Parola V., Navarro, R. M., Murcia-Mascarós S., and Fierro J. L. G. Carbon, 2006, 44, (1), 84 [Google Scholar]
  111. Qiu, J., Zhang, H., Wang, X., Han, H., Liang C., and Li, C. React. Kinet. Catal. Lett., 2006, 88, (2), 269 [Google Scholar]
  112. Yoon, B., Pan H.-B., and Wai, C. M. J. Phys. Chem. C, 2009, 113, (4), 1520 [Google Scholar]
  113. Starodubtseva, E. V., Vinogradov, M. G., Turova, O. V., Bumagin, N. A., Rakov E. G., and Sokolov, V. I. Catal. Commun., 2009, 10, (10), 1441 [Google Scholar]
  114. Starodubtseva, E. V., Sokolov, V. I., Bashilov, V. V., Novikov, Y. N., Martynova, E. V., Vinogradov M. G., and Turova, O. V. Mendeleev Commun., 2008, 18, (4), 209 [Google Scholar]
  115. Jung, A., Jess, A., Schubert T., and Schütz, W. Appl. Catal.A: Gen., 2009, 362, (1–2), 95 [Google Scholar]
  116. Jiang, L., Gu, H., Xu X., and Yan, X. J. Mol. Catal. A:Chem., 2009, 310, (1–2), 144 [Google Scholar]
  117. Mhlanga, S. D., Mondal, K. C., Naidoo, N., Kunjuzwa, N., Witcomb M. J., and Coville, N. J. S. Afr. J. Sci., 2009, 105, (7/8), 304 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/147106711X577274
Loading
/content/journals/10.1595/147106711X577274
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error