Skip to content
1887
Volume 44, Issue 4
  • ISSN: 0032-1400

Abstract

Not long ago structural intermetallics were metallurgical curiosities rather than the focus of a serious campaign to topple the supremacy of nickel-based superalloys. Indeed, a handful of intermetallic compounds, notably the titanium and nickel aluminides, have succeeded in making it to the point of operational testing; but, if anything, they have highlighted the challenges facing a new generation of ultra-high temperature materials. Two constraints in particular have directed developments. First, at the core of the development of intermetallics, is the need to address the dual requirements of low-temperature toughness and high-temperature strength central to structural applications. Second, the operating conditions of interest (temperatures above 1150°C) call for a marked improvement in the environmental resistance of the materials. In these respects, systems based on platinum group metals deserve attention. The potential benefits resulting from using composite microstructures based on platinum, iridium and ruthenium are highlighted here, using collaborative studies being undertaken by Mintek and a number of alloy development centres.

Loading

Article metrics loading...

/content/journals/10.1595/003214000X444158166
2000-01-01
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/pmr/44/4/pmr0044-0158.html?itemId=/content/journals/10.1595/003214000X444158166&mimeType=html&fmt=ahah

References

  1. and Fleischer R. L.Intermetallic Compounds – Principles and Practice”, eds. Westbrook J. H., John Wiley and Sons, Chichester, 1995 [Google Scholar]
  2. Yamabe-Mitarai Y., Ro Y., Maruko T., Yokokawa T., Harada H., Nathal M. V., Darolia R., Liu C. T., Martin P. L., Miracle D. B., Wagner R., and Yamaguchi M. Platinum Group Metals-Base Refractory Superalloys for Ultra-High Temperature Use’, Structural Intermetallics 1997, (Proc. 2nd Int. Symp. on Structural Intermetallics, Seven Springs, Champion, U.S-A., eds. Minerals, Metals & Materials Soc., 21st-26th Sept., 1997, pp. 805814) [Google Scholar]
  3. Wolff I. M., and Sauthoff G. Metall. Mater. Trans. A, 1996, 27A, 1395 [Google Scholar]
  4. Wolff I. M., and Sauthoff G. Metall. Mater. Trans. A, 1996, 27A, 2642 [Google Scholar]
  5. Hill P. J., Cornish L. A., and Witcomb M. J. J. Alloys Compd., 1999, 291, 30 [Google Scholar]
  6. Wolff I. M., and Fleischer R. L. Precious-Metal Intermetallic Compounds’, in “Intermetallic Compounds – Principles and Practice”, Vol. 3, eds. Westbrook J. H., John Wiley and Sons, Chichester, in press [Google Scholar]
  7. Yu X. H., Yamabe-Mitarai Y., Ro Y., and Harada H. Metall. Mater. Trans. A, 2000, 31A, 173 [Google Scholar]
  8. Yu X. H., Yamabe-Mitarai Y., Ro Y., and Harada H. Investigation on Microstructure and Fracture of Quaternary Ir-Based Alloys’, “Key Engineering Materials”, Vols. 171–174, 2000, pp. 677684 [Google Scholar]
  9. Fairbank G. B., Humphreys C. L., Kelly A., and Jones C. N. Conf. Proc. Intermetallics for the Third Millennium, ASM, Cincinnati, 1st-4th Nov., 1999 [Google Scholar]
  10. Fairbank G. B., Humphreys C. L., Kelly A., and Jones C. N. New Platinum Alloys for Ultra-High Temperature Applications’, presented at the 5th Charles Parsons Turbine Conf., Cambridge, U.K., 3rd-7th July, 2000 [Google Scholar]
  11. Hill P. J., Biggs T., Ellis P., Taylor S., and Wolff I. M. An Assessment of Ternary Precipitation-Strengthened Platinum Alloys for Ultra-High Temperature Applications’, Mater. Sci. Eng., in press [Google Scholar]
  12. Coatings for High-Temperature Structural Materials”, National Research Council, National Academy Press, Washington, D.C., 1996 [Google Scholar]
  13. Felten E. J., and Pettk F. S. Oxid Met., 1976, 10, (3), 189 [Google Scholar]
  14. Hill P. L., Ellis P., Cornish P. L. A., Witcomb M. J., and Wolff I. M. The Oxidation Behaviour of Pt-Al-X Alloys at Temperatures between 1200 and 1350°C’, presented at ‘High-Temperature Corrosion and Protection 2000’, Japan, 17th-22nd Sept, 2000 [Google Scholar]
  15. Westbrook J. H. Z. Kristallogr., 1958, 110, 21 [Google Scholar]
  16. Wee D.-M., Noguchi O., Oya Y., and Suzuki T. Trans. JIM, 1980, 21, 237 [Google Scholar]
  17. Yamabe-Mitarai Y., Hong M.-H., Ro Y., and Harada H. Philos. Mag. Lett., 1999, 79, (9), 673 [Google Scholar]
  18. Nabarro F. R. N. Mater. Sci. Eng., 1994, A184, 167 [Google Scholar]
  19. Hill P. J., Adams N., Biggs T., Ellis P., Taylor S., and Wolff I. M. Platinum Alloys Based on Pt-Pt3Al for Ultra-High Temperature Use’, presented at the 5th Int. Conf. Structural and Functional Intermetallics, Vancouver, Canada, 16th-20th July, 2000 [Google Scholar]
  20. Hill P. J., Yamabe-Mitarai Y., and Wolff I. M. High-Temperature Compression Strengths of Precipitation-Strengthened Ternary Pt-Al-X Alloys’, Scr. Mater., in press [Google Scholar]
  21. Dahlgren S. D. Trans. Metall. Soc. AIME, 1967, 239, 1867 [Google Scholar]
  22. Bradley A. J. J. Iron and Steel Inst., 1951, 168, 233 [Google Scholar]
  23. Calderon H. A., Fine M. E., and Weertman J. R. Metall. Trans. A, 1988, 19A, 1135 [Google Scholar]
  24. Taillard R., Pineau A., and Thomas B. J. Mater. Sci. Eng., 1982, 54, 209 [Google Scholar]
  25. Zhu S. M., Tjong S. C., and Lai J. K. L. Acta Mater., 1998, 46, (9), 2969 [Google Scholar]
  26. Wolff I. M., Iorio L. E., Rumpf T., Scheers P. V. T., and Potgieter H. Mater. Sci. Eng. A, 1998, 241, (1–2), 264 [Google Scholar]
  27. Ngwenya K. P., and Wolff I. M. Precipitation Strengthening in Ferritic Fe-Cr-Al-Ru Alloys’, Proc. Electron Microsc. Soc. S. Afr., 1999, 29, p. 19 [Google Scholar]
  28. Ngwenya K. P., and Wolff I. M. Precipitation Strengthening and Age-Hardening in Ferritic Fe-Cr-Al-Ru Alloys’, Scr. Mater., in press [Google Scholar]
  29. Jackson M. R. U. S. Patent 4,983,356; 1991 [Google Scholar]
  30. Fleischer R. L. Platinum Metals Rev., 1992, 36, (3), 138 [Google Scholar]
  31. Fleischer R. L., Field R. D., and Briant C. L. Metall. Trans. A, 1991, 22A, 403 [Google Scholar]
  32. Wolff I. M. JOM, 1997, 34 [Google Scholar]
  33. Wolff I. M., Cornish L. A., Sauthoff G., Steyn H. De V., and Coetzee R. Structure-Property-Application Relationships in Ruthenium Aluminide RuAl’, op. cit., (Ref. 2), pp. 815823 [Google Scholar]
  34. Wolff I. M., and Sauthoff G. Acta Mater., 1997, 45, (7), 2949 [Google Scholar]
  35. Wolff I. M. Metall. Mater. Trans. A, 1996, 27A, 3688 [Google Scholar]
/content/journals/10.1595/003214000X444158166
Loading
/content/journals/10.1595/003214000X444158166
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error