Skip to content
1887
Volume 45, Issue 1
  • ISSN: 0032-1400

Abstract

To construct molecular devices it is necessary to use mixed-valence metal complexes which have a large metal-metal separation distance and which exhibit strong coupling between the metals, so that errors which might arise from electrostatic interaction between the metal ions are prevented. Bridges, or spacers, are needed between two metal terminal sites to operate as effective molecular wires when one metal terminal site is in the excited state, and/or when both the terminal components are in the ground state. Binuclear ruthenium complexes, consisting of tris(β-diketonato)ruthenium(III) units, which are suitable as the terminal redox sites, can be used to evaluate how well the bridges function as molecular wires in the ground state. This is because their Ru(III)-Ru(II) and Ru(IV)-Ru(III) mixed-valence states are accessible for experimental use. In this article, a polyyne system and an ethynylated aromatic system are evaluated as molecular wires, using the binuclear (β-diketonato)ruthenium(III) complexes containing these systems as the bridges. In the Ru(IV)-Ru(III) mixed-valence state, the ruthenium complexes show relatively strong electronic interactions between the metal centres. This is interpreted by a superexchange (through-bond) hole transfer mechanism the highest occupied molecular orbitals of the bridge. Molecular orbital calculations provide a guide to the molecular design of bridging ligands for long-range electronic coupling.

Loading

Article metrics loading...

/content/journals/10.1595/003214001X451211
2001-01-01
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/pmr/45/1/pmr0045-0002.html?itemId=/content/journals/10.1595/003214001X451211&mimeType=html&fmt=ahah

References

  1. Creutz C., and Taube H. J. Am. Chem. Soc, 1969, 91, 3988 [Google Scholar]
  2. Robin M. B., and Day P. Adv. Inorg. Chem. Radiochem., 1967, 10, 247 [Google Scholar]
  3. Creutz C. Prog. Inorg. Chem., 1983, 30, 1 [Google Scholar]
  4. Sutton J. E., Taube H., Rezvani R.A., Bensimon C., Cromp B., Reber C., Greedan J. E., Kondratiev V. V., and Crutchley R. J. (a) Inorg. Chem., 1981, 20, 3125; (b) Inorg. Chem., 1997, 36, 3322 [Google Scholar]
  5. Moreira I. S., Franco D. W., Moreira I. S., and Franco D. W. (a) J. Chem. Soc., Chem. Commun., 1992, 450; (b) Inorg. Chem., 1994, 33, 1607 [Google Scholar]
  6. Le Narvor N., Lapinte C., Le Narvor N., Toupet L., Lapinte C., Coat F., and Lapinte C. (a) J. Chem. Soc, Chem. Commun., 1993, 357; (b) J. Am. Chem. Soc., 1995, 117, 7129; (c) Organometallics, 1996, 15, 477 [Google Scholar]
  7. Bartik T., Bartik B., Brady M., Dembinski R., and Gladysz J. A. Angew. Chem., Int. Ed Engl., 1996, 35, 414 [Google Scholar]
  8. Grosshenny V., Harriman A., Ziessel R., Harriman A., Ziessel R., Grosshenny V., Harriman A., Hissler M., and Ziessel R. (a) Angew. Chem., Int. Ed. Engl., 1995, 34, 2705; (b) Chem. Commun., 1996, 1707; (c) Platinum Metals Rev., 1996, 40, 26 and 72 [Google Scholar]
  9. Sutton J. E., and Taube H. Inorg. Chem., 1981, 20, 3125 [Google Scholar]
  10. Grosshenny V., Harriman A., Romero F. M., and Ziessel R. Phys. Chem., 1996, 100, 17472 [Google Scholar]
  11. Endo A., Hoshino Y., Hirakata K., Takeuchi Y., Shimizu K., Furushima Y., Ikeuchi H., Satô G. P., Hoshino Y., Yukawa Y., Maruyama T., Endo A., Shimizu K., and Satô G. P. (a) Bull. Chem. Soc Jpn., 1989, 62, 709; (b) Inorg. Chim. Acta, 1988, 150, 25 [Google Scholar]
  12. Mehrotra R. C., Bohra R., and Gaur D. P. Metal P-Diketonates and Allied Derivatives”, Academic Press, London, 1978, p. 31 [Google Scholar]
  13. Kasahara Y., Hoshino Y., Kajitani M., Shimizu K., and Satô G. P. Organometallics, 1992, 11, 1968 [Google Scholar]
  14. Hay J. A. S. Org. Chem., 1962, 27, 3320 [Google Scholar]
  15. Hoshino Y., Nishikawa T., Takahashi K., and Aoki K. Denki Kagaku Oyobi Kogyobutsuri Kagaku, 1993, 61, 770 [Google Scholar]
  16. Hoshino Y., Suzuki T., and Umeda H. Inorg. Chim. Acta, 1996, 245, 87 [Google Scholar]
  17. Closs G. L., and Miller J. R. Science, 1988, 240, 440 [Google Scholar]
  18. Hoshino Y., and Hagihara Y. Inorg. Chim. Acta, 1999, 292, 64 [Google Scholar]
  19. Marcus R. A., Marcus R. A., Marcus R. A., Sutin N., Marcus R. A., Siders P., Marcus R. A., Sutin N., Sutin N., Hush N. S., Hush N. S., and Hush N. S. (a) J. Chem. Phys., 1956, 24, 966; (b) Annu. Rev. Phys. Chem., 1964, 15, 155; (c) Biochim. Biophys. Acta, 1985, 811, 265; (d) Phys. Chem., 1982, 86, 622; (e) Inorg. Chem., 1975, 14, 213; (f) Photochem., 1979, 10, 19; (g) Prog. Inorg. Chem., 1967, 8, 391; (h) Electrochim. Acta, 1968, 13, 1005; (i) Coord. Chem. Rev., 1985, 64, 135 [Google Scholar]
  20. Bowler B. E., Raphael A. L., Gray H. B., Kosloff R., Ratner M. A., and Newton M. D. (a) Prog. Inorg. Chem., 1990, 38, 259; (b) Israel J. Chem., 1990, 30, 45; (c) Chem. Rev., 1991, 91, 767 [Google Scholar]
  21. A distance required by Hush theory is the effective donor-acceptor separation distance (r), assumed to be related to dipole moment expectation values by r = | μi — μf | en, where μi, and μf are the dipole moments of the localised initial and final states in a mixed-valence system, respectively, and where e is the electronic charge and n is the number of electrons in the system. On the other hand, R in Equation (viii) derived by the superexchange mechanism may be defined in terms of the actual bond lengths for the through-bond sequence pertinent to the pathway being modelled (20c). The Ru-Ru separation (d(M-M)) approximately reflects the length of the bridge in the present systems. In Class II binu-clear metal complexes, when the metal-metal coupling is not very strong (probably c < 104), the metal-metal separation is usually used instead of the dipole moment length (24).
  22. Hoshino Y., Umeda H., and Kamo Y. Abstracts of papers at the 44th Symp. on Coordination Chemistry of Japan, Yokahama, 1994, p. 178 [Google Scholar]
  23. Hashimoto T., Endo A., Nagao N., Satô G. P., Natarajan K., and Shimizu K. Inorg. Chem., 1998, 37, 5211 [Google Scholar]
  24. Isied S. S., Wishart J. F., Creutz C., Schwarz H. A., Sutin N., Haga M.-A., Ali M., Koseki S., Yoshimura A., Nozaki K., Ohno T., Ribou A.-C., Launay J.-P., Takahashi K., Nihira T., Tarutani S., Spangler C. W., Rezvani A. R., Bensimon C., Cromp B., Reber C., Greedan J. E., Kondratiev V. V., Crutchley R. J., Chen Y. J., Kao C.-H., Lin S. J., Tai C.-C., Kwan K. S., Rocha R. C., Araki K., Toma H. E., Demadis K. D., Neyhart G. A., Kober E. M., White P. S., and Meyer T. J. (a) J. Am. Chem. Soc, 1988, 110, 635; (b) Inorg. Chim. Acta, 1994, 226, 17; (c) Inorg. Chem., 1994, 33, 1325; (d)Inorg. Chem., 1997, 36, 3322; (e) Inorg. Chem., 2000, 39, 189; (f) Inorg. Chim. Acta, 1999, 285, 197; (g) Inorg. Chem., 1999, 38, 5948 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214001X451211
Loading
/content/journals/10.1595/003214001X451211
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error