Skip to content
1887
Volume 45, Issue 3
  • ISSN: 0032-1400

Abstract

The first part of this paper describes a combination of physical metallurgical techniques and hydrogen (H) solubilities employed to help in the characterisation of defects in palladium and its alloys. Cold working or hydride formation and decomposition introduce large dislocation densities into palladium and palladium alloys. These can be examined by transmission electron microscopy and correlated with hydrogen (H) segregation to the stress fields of the dislocations determined from H solubilities. H atoms are strongly trapped by vacancies in the palladium lattice and evidence for vacancy trapping in cold-worked palladium is shown by deviations in H solubility, different to that expected if H segregated only to the dislocation stress fields. The second part of this paper, to be published in the October 2001 issue, will be concerned with hydrogen segregation to defects introduced by the internal oxidation of palladium alloys or by treatment at moderately high temperatures and hydrogen pressures.

Loading

Article metrics loading...

/content/journals/10.1595/003214001X453114121
2001-01-01
2024-09-07
Loading full text...

Full text loading...

/deliver/fulltext/pmr/45/3/pmr0045-0114.html?itemId=/content/journals/10.1595/003214001X453114121&mimeType=html&fmt=ahah

References

  1. T. Graham, 1Phil. Trans. Roy. Soc., 1966, 156, 415 [Google Scholar]
  2. S. Myers, M. Baskes, H. Birnbaum, J. Corbett, G. DeLeo, S. Estreicher, E. Haller, P. Jena, N. Johnson, R. Kirchheim, S. Pearton, M. Stavola, 2Rev. Mod. Phys., 1992, 64, 559 [Google Scholar]
  3. R. Kirchheim, 3Prog. Mater. Sci., 1988, 32, 261 [Google Scholar]
  4. R. Kirchheim, R. W. Cahn, 4Encyclopedia of Materials Science”, ed. Oxford University Press, 1990, p. 990 [Google Scholar]
  5. Y. Sakamoto, F. Chen, M. Ura, T. Flanagan, 5Ber. Bunsenges Phys. Chem., 1995, 99, 807 [Google Scholar]
  6. T. Flanagan, C.-N. Park, W. Oates, 6Prog. Solid State Chem., 1995, 23, 291 [Google Scholar]
  7. M. Wise, J. Farr, I. Harris, J. Hirst, 7Hydrogen in Metals”, Vol. 1, Pergamon Press, Oxford, 1977, p. 1 [Google Scholar]
  8. T. Kuji, T. Flanagan, Y. Sakamoto, M. Hasaki, 8Scr. Met., 1985, 19, 1369 [Google Scholar]
  9. B. Heuser, J. King, 9J. Alloys Compd., 1997, 261, 225 [Google Scholar]
  10. T. Flanagan, F. Lewis, 10Trans. Faraday Soc., 1959, 55, 1409 [Google Scholar]
  11. E. Wicke, G. Nernst, 11Ber. Bunsenges Phys. Chem., 1964, 68, 224 [Google Scholar]
  12. T. Flanagan, J. Lynch, 12J. Less-Common Met., 1976, 49, 25 [Google Scholar]
  13. R. Kirchheim, 13Acta Metall., 1981, 29, 845 [Google Scholar]
  14. W. Tyson, 14J. Less-Common Met., 1980, 70, 209 [Google Scholar]
  15. W. Wolfer, M. Baskes, 15Acta Metall., 1985, 33, 2005 [Google Scholar]
  16. C.-N. Park, T. Flanagan, H. Lee, 16J. Korean Inst. Met., 1987, 25, 41 [Google Scholar]
  17. X. Huang, 17 1989
  18. D. Wang, T. Flanagan, R. Balasubramaniam, 18Scr. Mater., 1999, 41, 517 [Google Scholar]
  19. W. Oates, T. Flanagan, 19Prog. Solid State Chem., 1981, 13, 193 [Google Scholar]
  20. J. Li, R. Oriani, L. Darken, 20Z. Phys. Chem., 1966, 49, 271 [Google Scholar]
  21. J. Hirth, J. Lothe, 21Theory of Dislocations”, J. Wiley, New York, 1982 [Google Scholar]
  22. R. Kirchheim, 22Acta Metall., 1986, 34, 37 [Google Scholar]
  23. J. Lynch, J. Clewley, T. Curran, T. Flanagan, 23J. Less-Common Met., 1973, 55, 153 [Google Scholar]
  24. S. Kishimoto, N. Yoshida, Y. Arita, T. Flanagan, 24Ber. Bunsenges Phys. Chem., 1990, 94, 612 [Google Scholar]
  25. S. Kishimoto, N. Yoshida, T. Yao, T. Itani, T. Flanagan, 25Scr. Met. Mater., 1991, 25, 877 [Google Scholar]
  26. S. Kishimoto, N. Yoshida, T. Yao, T. Itani, T. Flanagan, 26Ber. Bunsenges Phys. Chem., 1992, 96, 1477 [Google Scholar]
  27. S. Kishimoto, N. Yoshida, T. Hiratsuka, A. Nakano, T. Masui, T. Flanagan, 27Scr. Met., 1994, 30, 643 [Google Scholar]
  28. T. Flanagan, W. Oates, 28Ann. Rev. Mater. Sci., 1991, 21, 269 [Google Scholar]
  29. J. Cohen, M. Bever, 29Trans. Met. Soc. AIME, 1960, 218, 155 [Google Scholar]
  30. S. Kishimoto, N. Yoshida, T. Masui, T. Ibaragi, A. Nakano, T. Hiratsuka, 30Ber. Bunsenges Phys. Chem., 1996, 100, 68 [Google Scholar]
  31. S. Myers, W. Wampler, F. Besenbacher, S. Robinson, N. Moody, 31Mater. Sci. Eng., 1985, 69, 397 [Google Scholar]
  32. S. Myers, P. Richards, W. Wampler, F. Besenbacher, 32J. Nucl. Mater., 1992, 165, 9 [Google Scholar]
  33. T. Flanagan, S. Kishimoto, P. Jena, C. Satterthwaite, 33Electronic Structure and Properties of Hydrogen in Metals”, eds. Plenum Press, New York, 1983, p. 623 [Google Scholar]
  34. R. Smallman, 34Modern Physical Metallurgy”, Butterworths, London, 1970 [Google Scholar]
  35. W. Koster, H.-P. Kehrer, 35Z. Metallkd., 1965, 56, 760 [Google Scholar]
  36. B. Baranowski, S. Majchrzak, T. Flanagan, 36L. Phys. F: Met. Phys., 1970, 1, 258 [Google Scholar]
  37. R. Kirchheim, 37Acta Metall., 1986, 34, 34 [Google Scholar]
  38. U. Stolz, U. Nagorny, R. Kirchheim, 38Scr. Met., 1984, 18, 347 [Google Scholar]
/content/journals/10.1595/003214001X453114121
Loading
/content/journals/10.1595/003214001X453114121
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test