Skip to content
Volume 45, Issue 3
  • ISSN: 0032-1400


The first part of this paper describes a combination of physical metallurgical techniques and hydrogen (H) solubilities employed to help in the characterisation of defects in palladium and its alloys. Cold working or hydride formation and decomposition introduce large dislocation densities into palladium and palladium alloys. These can be examined by transmission electron microscopy and correlated with hydrogen (H) segregation to the stress fields of the dislocations determined from H solubilities. H atoms are strongly trapped by vacancies in the palladium lattice and evidence for vacancy trapping in cold-worked palladium is shown by deviations in H solubility, different to that expected if H segregated only to the dislocation stress fields. The second part of this paper, to be published in the October 2001 issue, will be concerned with hydrogen segregation to defects introduced by the internal oxidation of palladium alloys or by treatment at moderately high temperatures and hydrogen pressures.


Article metrics loading...

Loading full text...

Full text loading...



  1. Graham T. 1Phil. Trans. Roy. Soc., 1966, 156, 415 [Google Scholar]
  2. Myers S., Baskes M., Birnbaum H., Corbett J., DeLeo G., Estreicher S., Haller E., Jena P., Johnson N., Kirchheim R., Pearton S., and Stavola M. 2Rev. Mod. Phys., 1992, 64, 559 [Google Scholar]
  3. Kirchheim R. 3Prog. Mater. Sci., 1988, 32, 261 [Google Scholar]
  4. Kirchheim R., and Cahn R. W. 4Encyclopedia of Materials Science”, ed. Oxford University Press, 1990, p. 990 [Google Scholar]
  5. Sakamoto Y., Chen F., Ura M., and Flanagan T. 5Ber. Bunsenges Phys. Chem., 1995, 99, 807 [Google Scholar]
  6. Flanagan T., Park C.-N., and Oates W. 6Prog. Solid State Chem., 1995, 23, 291 [Google Scholar]
  7. Wise M., Farr J., Harris I., and Hirst J. 7Hydrogen in Metals”, Vol. 1, Pergamon Press, Oxford, 1977, p. 1 [Google Scholar]
  8. Kuji T., Flanagan T., Sakamoto Y., and Hasaki M. 8Scr. Met., 1985, 19, 1369 [Google Scholar]
  9. Heuser B., and King J. 9J. Alloys Compd., 1997, 261, 225 [Google Scholar]
  10. Flanagan T., and Lewis F. 10Trans. Faraday Soc., 1959, 55, 1409 [Google Scholar]
  11. Wicke E., and Nernst G. 11Ber. Bunsenges Phys. Chem., 1964, 68, 224 [Google Scholar]
  12. Flanagan T., and Lynch J. 12J. Less-Common Met., 1976, 49, 25 [Google Scholar]
  13. Kirchheim R. 13Acta Metall., 1981, 29, 845 [Google Scholar]
  14. Tyson W. 14J. Less-Common Met., 1980, 70, 209 [Google Scholar]
  15. Wolfer W., and Baskes M. 15Acta Metall., 1985, 33, 2005 [Google Scholar]
  16. Park C.-N., Flanagan T., and Lee H. 16J. Korean Inst. Met., 1987, 25, 41 [Google Scholar]
  17. Huang X. 17 1989
  18. Wang D., Flanagan T., and Balasubramaniam R. 18Scr. Mater., 1999, 41, 517 [Google Scholar]
  19. Oates W., and Flanagan T. 19Prog. Solid State Chem., 1981, 13, 193 [Google Scholar]
  20. Li J., Oriani R., and Darken L. 20Z. Phys. Chem., 1966, 49, 271 [Google Scholar]
  21. Hirth J., and Lothe J. 21Theory of Dislocations”, J. Wiley, New York, 1982 [Google Scholar]
  22. Kirchheim R. 22Acta Metall., 1986, 34, 37 [Google Scholar]
  23. Lynch J., Clewley J., Curran T., and Flanagan T. 23J. Less-Common Met., 1973, 55, 153 [Google Scholar]
  24. Kishimoto S., Yoshida N., Arita Y., and Flanagan T. 24Ber. Bunsenges Phys. Chem., 1990, 94, 612 [Google Scholar]
  25. Kishimoto S., Yoshida N., Yao T., Itani T., and Flanagan T. 25Scr. Met. Mater., 1991, 25, 877 [Google Scholar]
  26. Kishimoto S., Yoshida N., Yao T., Itani T., and Flanagan T. 26Ber. Bunsenges Phys. Chem., 1992, 96, 1477 [Google Scholar]
  27. Kishimoto S., Yoshida N., Hiratsuka T., Nakano A., Masui T., and Flanagan T. 27Scr. Met., 1994, 30, 643 [Google Scholar]
  28. Flanagan T., and Oates W. 28Ann. Rev. Mater. Sci., 1991, 21, 269 [Google Scholar]
  29. Cohen J., and Bever M. 29Trans. Met. Soc. AIME, 1960, 218, 155 [Google Scholar]
  30. Kishimoto S., Yoshida N., Masui T., Ibaragi T., Nakano A., and Hiratsuka T. 30Ber. Bunsenges Phys. Chem., 1996, 100, 68 [Google Scholar]
  31. Myers S., Wampler W., Besenbacher F., Robinson S., and Moody N. 31Mater. Sci. Eng., 1985, 69, 397 [Google Scholar]
  32. Myers S., Richards P., Wampler W., and Besenbacher F. 32J. Nucl. Mater., 1992, 165, 9 [Google Scholar]
  33. Flanagan T., Kishimoto S., Jena P., and Satterthwaite C. 33Electronic Structure and Properties of Hydrogen in Metals”, eds. Plenum Press, New York, 1983, p. 623 [Google Scholar]
  34. Smallman R. 34Modern Physical Metallurgy”, Butterworths, London, 1970 [Google Scholar]
  35. Koster W., and Kehrer H.-P. 35Z. Metallkd., 1965, 56, 760 [Google Scholar]
  36. Baranowski B., Majchrzak S., and Flanagan T. 36L. Phys. F: Met. Phys., 1970, 1, 258 [Google Scholar]
  37. Kirchheim R. 37Acta Metall., 1986, 34, 34 [Google Scholar]
  38. Stolz U., Nagorny U., and Kirchheim R. 38Scr. Met., 1984, 18, 347 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error