Skip to content
1887
Volume 45, Issue 4
  • ISSN: 0032-1400

Abstract

The first part of this paper, published in the July issue of this Journal, described the combination of physical metallurgical techniques and hydrogen solubilities used to help in characterising defects in palladium (Pd) and Pd alloys. In this second part, the solubilities of hydrogen (H) in internally oxidised Pd alloys are discussed. Internal oxidation, for example of a palladium-aluminium alloy, results in the formation of small alumina precipitates within the Pd matrix. Dissolved H in the alloy is strongly trapped at the metal/oxide interface. This can be detected by deviations in H solubility from that expected for Pd. Hydrogen in Pd and its alloys has been modelled mathematically as the occupation by H atoms of interstitial sites within fixed metal sublattices. However, recently it has been realised that at moderately high temperatures and H pressures some alloy lattices are not fixed, as the dissolved H promotes metal atom diffusion. This results in phase separation in some alloys, for example (Pd + Pt + H), according to a ternary equilibrium. The dissolved H can be removed from such alloys at low temperatures allowing the metastable, phase-separated alloy lattices to be characterised via measurements of H solubilities and suitable physical metallurgical techniques.

Loading

Article metrics loading...

/content/journals/10.1595/003214001X454166174
2001-01-01
2024-03-01
Loading full text...

Full text loading...

/deliver/fulltext/pmr/45/4/pmr0045-0166.html?itemId=/content/journals/10.1595/003214001X454166174&mimeType=html&fmt=ahah

References

  1. Meijering J., “Advances in Materials Research”, ed. and Herman H. 5, Wiley, New York, 1971, p. 1 [Google Scholar]
  2. Eastman J., and Ruhle M. Ceram. Eng. Sei. Proc, 1989, 10, 1515 [Google Scholar]
  3. Huang X. Y., Mader W., and Kirchheim R. Acta Metall. Mater., 1991, 39, 893 [Google Scholar]
  4. Noh H., Flanagan T., Balasubramaniam R., and Eastman J. Ser. Mater., 1996, 34, 665 [Google Scholar]
  5. Balasubramaniam R., Noh H., Flanagan T., and Sakamoto Y. Acta Metall. Mater., 1997, 39, 893 [Google Scholar]
  6. Mackert J., Ringle R., and Fairhurst C. J. Dent. Res., 1983, 62, 1229 [Google Scholar]
  7. Guruswamy S., Park S., Hirth J., and Rapp R. Oxid Met, 1986, 26, 77 [Google Scholar]
  8. Balasubramaniam R., Kirchheim R., Wang D., and Flanagan T. J. Alloys Compi, 1999, 293-295, 306 [Google Scholar]
  9. Wang D., Clewley J., Flanagan T., Sakamoto Y., and Shanahan K. J. Alloys Compd., 2000, 298, 261 [Google Scholar]
  10. Flanagan T., Wang D., and Shanahan K. Phys. Chem. Cbem. Phys., 2000, 2, 4976 [Google Scholar]
  11. Gegner J., Horz G., and Kirchheim R. Interface Sci., 1997, 5, 231 [Google Scholar]
  12. Wang D., Flanagan T., and Balasubramaniam R.
  13. Flanagan T., Balasubramaniam R., and Sakamoto Y.
  14. Klein M., and Huggins R. Acta Metall., 1962, 10, 55 [Google Scholar]
  15. Lewis M., and Martin J. Acta Metall., 1963, 11, 1207 [Google Scholar]
  16. Raub E., Beeskow H., and Menzel D. Z. Metallkd., 1959, 50, 426 [Google Scholar]
  17. Shield J., and Williams R. Scr. Met., 1987, 21, 1475 [Google Scholar]
  18. Noh H., Clewley J., Flanagan T., and Craft A. J. Alloys Compd., 1996, 240, 235 [Google Scholar]
  19. Watanabe K., Okuma N., Fukai Y., Sakamoto Y., and Hayashi Y. Scr. Mater., 1996, 34, 551 [Google Scholar]
  20. Flanagan T., and Park C.-N. J. Alloys Compd., 1999, 293-295, 161 [Google Scholar]
  21. Flanagan T., Clewley J., Noh H., Barker J., and Sakamoto Y. Acta Metall, 1998, 46, 2173 [Google Scholar]
  22. Flanagan T., Noh H., Clewley J., and Barker J. Scr. Met, 1998, 39, 1607 [Google Scholar]
  23. Luke R., Schmitz G., Flanagan T., and Kirchheim R. J. Alloys Compd., in press [Google Scholar]
  24. Wicke E., Brodowsky H., “Hydrogen in Metals”, eds. Alefeld G., and Völkl J. 2, Springer-Verlag, Heidelberg, 1978 [Google Scholar]
  25. Frieske H., and Wicke E. Ber. Bunsenges Phys. Chem., 1973, 77, 48 [Google Scholar]
  26. Everett D., and Sermon P. Z. Phys. Chem. NF, 1979, 114, 101 [Google Scholar]
  27. Miitschele T., and Kkchheim R. Scr. Metall., 1987, 21, 135 [Google Scholar]
  28. Miitschele T., and Kirchheim R. op. cit. (Ref. 65), p. 101
  29. Natter H., Wettmann B., Heisel B., and Hempelmann R. J. Alloys Compd., 1997, 253-254, 84 [Google Scholar]
  30. Pundt A., Sachs C., Winter M., Reetz M., Fritsch D., and Kirchheim R. J. Alloys Compi, 1999, 293-295, 480 [Google Scholar]
  31. Eastman J., Thompson L., and Kestel B. Phys. Rev. B, 1993, 48, 84 [Google Scholar]
  32. Ziittel A., Nutzenadel Ch., Schmid G., Chartouni D., and Schlapbach L. J. Alloys Compd, 1999, 293-295, 472 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214001X454166174
Loading
/content/journals/10.1595/003214001X454166174
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error