Skip to content
1887
Volume 47, Issue 1
  • ISSN: 0032-1400

Abstract

The basic principles of semiconductor photochemistry, particularly using titania as a semiconductor photocatalyst, are discussed. When a platinum group metal or its oxide is deposited onto the surface of a sensitised semiconductor the overall efficiency of the reactions it takes part in are often improved, especially when the deposits are used as hydrogen and oxygen catalysts, respectively. Methods of depositing metal or metal oxide are examined, and a particular focus is given to a photodeposition process that uses a sacrificial electron donor. Platinum group metal and platinum group metal oxide coated semiconductor photocatalysts are prominent in heterogeneous systems that are capable of the photoreduction, oxidation and cleavage of water. There is a recent renaissance in work on water-splitting semiconductor-sensitised photosystems, but there are continued concerns over their irreproducibility, longevity and photosynthetic nature.

Loading

Article metrics loading...

/content/journals/10.1595/003214003X471212
2003-01-01
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/pmr/47/1/pmr0047-0002.html?itemId=/content/journals/10.1595/003214003X471212&mimeType=html&fmt=ahah

References

  1. N. Serpone, A. V. Emeline, Int. J. Photoenergy, 2002, 4, 91 [Google Scholar]
  2. A. Mills, S. Le Hunte, J. Photochem. Photobiol A: Chem., 1997, 108, 1 [Google Scholar]
  3. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 1995, 4, 69 [Google Scholar]
  4. A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev., 1995, 4, 735 [Google Scholar]
  5. J. W. M. Jacobs, J. Phys. Chem., 1986, 90, 6507 [Google Scholar]
  6. D. E. Aspnes, A. Heller, J. Phys. Chem., 1983, 87, 4919 [Google Scholar]
  7. H. Gerischer, J. Phys. Chem., 1984, 88, 6096 [Google Scholar]
  8. T. Tatsuma, S. I. Tachibana, T. Miwa, D. A. Tryk, A. Fujishima, J. Phys. Chem., 1999, 103, 8033 [Google Scholar]
  9. W. W. Dunn, Y. Aikawa, A. J. Bard, J. Am. Chem. Soc., 1981, 103, 3456 [Google Scholar]
  10. F. Howe, M. Grätzel, J. Phys. Chem., 1987, 91, 3906 [Google Scholar]
  11. J. S. Curran, J. Domenech, N. Jaffrezic-Renault, R. Philippe, J. Phys. Chem., 1985, 89, 957 [Google Scholar]
  12. A. Mills, Chem. Soc. Rev., 1989, 18, 285 [Google Scholar]
  13. A. Mills, S. Morris, op. cit., (Ref. 2), 1993, 71, 285 [Google Scholar]
  14. P. Pichat, J.-M. Herrmann, J. Disdier, H. Courbon, M.-N. Mozzanega, Nouv. J. Chem, 1981, 5, 627 [Google Scholar]
  15. D. W. Bahnemann, J. Monig, R. Chapman, Phys. Chem., 1987, 91, 3782 [Google Scholar]
  16. A. Mills, Chem. Soc., Chem. Commun., 1982, 367 [Google Scholar]
  17. J. C. Crittenden, J. Liu, D. W. Hand, D. L. Perram, Water Res., 1997, 31, 429 [Google Scholar]
  18. B. Kraeutler, A. J. Bard, J. Am. Chem. Soc., 1978, 100, 2239 [Google Scholar]
  19. B. Kraeutler, A. J. Bard, J. Am. Chem. Soc., 1978, 100, 5985 [Google Scholar]
  20. R. Baba, R. Konda, A. Fujishima, K. Honda, Chem. Leff., 1986, 1307 [Google Scholar]
  21. C. Sungbom, M. Kawai, K. Tanaka, Bull. Chem. Soc. Jpn., 1984, 4, 871 [Google Scholar]
  22. G. Al-Sayyed, J.-C. D’Oliveira, P. Pichat, op. cit., (Ref. 2), 1991, 4, 99 [Google Scholar]
  23. D. Hufschmidt, D. Bahnemann, J. J. Testa, C. A. Emilio, M. I. Litter, op. cit, (Ref. 2), 2002, 4, 223 [Google Scholar]
  24. N. Jaffrezic-Renault, P. Pichat, A. Foissy, R. Mercier, J. Phys. Chem., 1986, 90, 2733 [Google Scholar]
  25. H. Courbon, J. M. Herrmann, P. Pichat, J. Phys. Chem., 1984, 88, 5210 [Google Scholar]
  26. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Graetzel, J. Am. Chem. Soc., 1981, 103, 6324 [Google Scholar]
  27. D. Duonghong, E. Borgarello, M. Graetzel, J. Am. Chem. Soc., 1981, 103, 4685 [Google Scholar]
  28. A. J. Bard, J. Photochem, 1979, 10, 59 [Google Scholar]
  29. T. Sakata, T. Kawai, Nouv. J. Chem, 1981, 5, 279 [Google Scholar]
  30. M. R. St. John, A. J. Furgala, A. F. Sammells, J. Phys. Chem., 1983, 87, 801 [Google Scholar]
  31. P. Pichat, M.-N. Mozzanega, J. Disdier, J.-M. Herrmann, Nouv. J. Chem, 1982, 6, 559 [Google Scholar]
  32. F. H. Hussien, R. Rudham, J. Chem. Soc., Faraday Trans. I, 1984, 80, 2817 [Google Scholar]
  33. O. Enea, A. Ali, New J. Chem., 1988, 12, 853 [Google Scholar]
  34. A. Mills, G. Porter, op. cit., (Ref. 32), 1982, 78, 3659 [Google Scholar]
  35. P. Cruendet, K. K. Rao, M. Gratzel, D. O. Hall, Biochemie, 1986, 68, 217 [Google Scholar]
  36. T. Sakata, T. Kawai, K. Hashimoto, Chem. Phys. Lett., 1982, 88, 50 [Google Scholar]
  37. A. Mills, G. Porter, op. cit, (Ref. 32), 1982, 78, 3659 [Google Scholar]
  38. J. R. Darwent, A. Mills, J. Chem. Soc., Faraday Trans. II, 1982, 78, 359 [Google Scholar]
  39. W. Erbs, J. Desilvestro, E. Borgarello, M. Grätzel, J. Phys. Chem.., 1984, 88, 5827 [Google Scholar]
  40. G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, H. Arakawa, Appl. Catal. A: Gen., 2001, 205, 117 [Google Scholar]
  41. T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumara, op. cit., (Ref. 2), 1999, 127, 107 [Google Scholar]
  42. T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumara, op. cit., (Ref. 2), 1998, 118, 41 [Google Scholar]
  43. T. Takata, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Catal. Today, 1998, 44, 17 [Google Scholar]
  44. G. N. Schrauzer, T. D. Guth, J. Am. Chem. Soc., 1977, 99, 7189 [Google Scholar]
  45. H. van Damme, W. K. Hall, Am. Chem. Soc., 1979, 101, 4373 [Google Scholar]
  46. S. Sato, J. M. White, Chem. Phys. lett., 1980, 72, 83 [Google Scholar]
  47. T. Kawai, T. Sakata, Chem. Phys. Lett., 1980, 72, 87 [Google Scholar]
  48. F. T. Domen, G. A. Somorjai, Nature (London), 1980, 285, 559 [Google Scholar]
  49. S. Sato, New J. Chem., 1988, 12, 859 [Google Scholar]
  50. K. Sayama, H. Arakawa, J. Chem. Soc., Chem. Commun., 1992, 150 [Google Scholar]
  51. M. Grätzel, Acc. Chem. Res., 1981, 14, 376 [Google Scholar]
  52. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Grätzel, Nature (London), 1981, 289, 158 [Google Scholar]
  53. E. Borgarello, J. Kiwi, M. Grätzel, E. Pelizzetti, M. Visca, J. Am. Chem. Soc., 1982, 104, 2996 [Google Scholar]
  54. J. M. Lehn, J. P. Sauvage, R. Ziessel, Nouv. J. Chem., 1980, 4, 623 [Google Scholar]
  55. K. Yamaguti, S. Sato, Nouv. J. Chim., 1986, 1, 217 [Google Scholar]
  56. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, J. Phys. Chem., 1986, 90, 292 [Google Scholar]
  57. S.-C. Moon, H. Mametsuka, S. Tabata, E. Suzuki, Catal. Today, 2000, 58, 125 [Google Scholar]
  58. A. Kudo, K. Domen, K. Maruya, T. Onishi, Chem. Phys. Lett., 1987, 133, 517 [Google Scholar]
  59. K. Sayama, H. Arakawa, J. Phys. Chem., 1993, 97, 531 [Google Scholar]
  60. Y. Inoue, Y. Asai, K. Sato, J. Chem. Soc., Faraday Trans., 1994, 90, 797 [Google Scholar]
  61. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, op. cit., (Ref. 2), 1997, 106, 45 [Google Scholar]
  62. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature, 2001, 414, 625 [Google Scholar]
/content/journals/10.1595/003214003X471212
Loading
/content/journals/10.1595/003214003X471212
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test