Skip to content
1887
Volume 47, Issue 1
  • ISSN: 0032-1400

Abstract

The basic principles of semiconductor photochemistry, particularly using titania as a semiconductor photocatalyst, are discussed. When a platinum group metal or its oxide is deposited onto the surface of a sensitised semiconductor the overall efficiency of the reactions it takes part in are often improved, especially when the deposits are used as hydrogen and oxygen catalysts, respectively. Methods of depositing metal or metal oxide are examined, and a particular focus is given to a photodeposition process that uses a sacrificial electron donor. Platinum group metal and platinum group metal oxide coated semiconductor photocatalysts are prominent in heterogeneous systems that are capable of the photoreduction, oxidation and cleavage of water. There is a recent renaissance in work on water-splitting semiconductor-sensitised photosystems, but there are continued concerns over their irreproducibility, longevity and photosynthetic nature.

Loading

Article metrics loading...

/content/journals/10.1595/003214003X471212
2003-01-01
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/pmr/47/1/pmr0047-0002.html?itemId=/content/journals/10.1595/003214003X471212&mimeType=html&fmt=ahah

References

  1. Serpone N., and Emeline A. V. Int. J. Photoenergy, 2002, 4, 91 [Google Scholar]
  2. Mills A., and Le Hunte S. J. Photochem. Photobiol A: Chem., 1997, 108, 1 [Google Scholar]
  3. Hoffmann M. R., Martin S. T., Choi W., and Bahnemann D. W. Chem. Rev., 1995, 4, 69 [Google Scholar]
  4. Linsebigler A. L., Lu G., and Yates J. T. Chem. Rev., 1995, 4, 735 [Google Scholar]
  5. Jacobs J. W. M. J. Phys. Chem., 1986, 90, 6507 [Google Scholar]
  6. Aspnes D. E., and Heller A. J. Phys. Chem., 1983, 87, 4919 [Google Scholar]
  7. Gerischer H. J. Phys. Chem., 1984, 88, 6096 [Google Scholar]
  8. Tatsuma T., Tachibana S. I., Miwa T., Tryk D. A., and Fujishima A. J. Phys. Chem., 1999, 103, 8033 [Google Scholar]
  9. Dunn W. W., Aikawa Y., and Bard A. J. J. Am. Chem. Soc., 1981, 103, 3456 [Google Scholar]
  10. Howe F., and Grätzel M. J. Phys. Chem., 1987, 91, 3906 [Google Scholar]
  11. Curran J. S., Domenech J., Jaffrezic-Renault N., and Philippe R. J. Phys. Chem., 1985, 89, 957 [Google Scholar]
  12. Mills A. Chem. Soc. Rev., 1989, 18, 285 [Google Scholar]
  13. Mills A., and Morris S. op. cit., (Ref. 2), 1993, 71, 285 [Google Scholar]
  14. Pichat P., Herrmann J.-M., Disdier J., Courbon H., and Mozzanega M.-N. Nouv. J. Chem, 1981, 5, 627 [Google Scholar]
  15. Bahnemann D. W., Monig J., and Chapman R. Phys. Chem., 1987, 91, 3782 [Google Scholar]
  16. Mills A. Chem. Soc., Chem. Commun., 1982, 367 [Google Scholar]
  17. Crittenden J. C., Liu J., Hand D. W., and Perram D. L. Water Res., 1997, 31, 429 [Google Scholar]
  18. Kraeutler B., and Bard A. J. J. Am. Chem. Soc., 1978, 100, 2239 [Google Scholar]
  19. Kraeutler B., and Bard A. J. J. Am. Chem. Soc., 1978, 100, 5985 [Google Scholar]
  20. Baba R., Konda R., Fujishima A., and Honda K. Chem. Leff., 1986, 1307 [Google Scholar]
  21. Sungbom C., Kawai M., and Tanaka K. Bull. Chem. Soc. Jpn., 1984, 4, 871 [Google Scholar]
  22. Al-Sayyed G., D’Oliveira J.-C., and Pichat P. op. cit., (Ref. 2), 1991, 4, 99 [Google Scholar]
  23. Hufschmidt D., Bahnemann D., Testa J. J., Emilio C. A., and Litter M. I. op. cit, (Ref. 2), 2002, 4, 223 [Google Scholar]
  24. Jaffrezic-Renault N., Pichat P., Foissy A., and Mercier R. J. Phys. Chem., 1986, 90, 2733 [Google Scholar]
  25. Courbon H., Herrmann J. M., and Pichat P. J. Phys. Chem., 1984, 88, 5210 [Google Scholar]
  26. Borgarello E., Kiwi J., Pelizzetti E., Visca M., and Graetzel M. J. Am. Chem. Soc., 1981, 103, 6324 [Google Scholar]
  27. Duonghong D., Borgarello E., and Graetzel M. J. Am. Chem. Soc., 1981, 103, 4685 [Google Scholar]
  28. Bard A. J. J. Photochem, 1979, 10, 59 [Google Scholar]
  29. Sakata T., and Kawai T. Nouv. J. Chem, 1981, 5, 279 [Google Scholar]
  30. St. John M. R., Furgala A. J., and Sammells A. F. J. Phys. Chem., 1983, 87, 801 [Google Scholar]
  31. Pichat P., Mozzanega M.-N., Disdier J., and Herrmann J.-M. Nouv. J. Chem, 1982, 6, 559 [Google Scholar]
  32. Hussien F. H., and Rudham R. J. Chem. Soc., Faraday Trans. I, 1984, 80, 2817 [Google Scholar]
  33. Enea O., and Ali A. New J. Chem., 1988, 12, 853 [Google Scholar]
  34. Mills A., and Porter G. op. cit., (Ref. 32), 1982, 78, 3659 [Google Scholar]
  35. Cruendet P., Rao K. K., Gratzel M., and Hall D. O. Biochemie, 1986, 68, 217 [Google Scholar]
  36. Sakata T., Kawai T., and Hashimoto K. Chem. Phys. Lett., 1982, 88, 50 [Google Scholar]
  37. Mills A., and Porter G. op. cit, (Ref. 32), 1982, 78, 3659 [Google Scholar]
  38. Darwent J. R., and Mills A. J. Chem. Soc., Faraday Trans. II, 1982, 78, 359 [Google Scholar]
  39. Erbs W., Desilvestro J., Borgarello E., and Grätzel M. J. Phys. Chem.., 1984, 88, 5827 [Google Scholar]
  40. Bamwenda G. R., Uesigi T., Abe Y., Sayama K., and Arakawa H. Appl. Catal. A: Gen., 2001, 205, 117 [Google Scholar]
  41. Ohno T., Tanigawa F., Fujihara K., Izumi S., and Matsumara M. op. cit., (Ref. 2), 1999, 127, 107 [Google Scholar]
  42. Ohno T., Tanigawa F., Fujihara K., Izumi S., and Matsumara M. op. cit., (Ref. 2), 1998, 118, 41 [Google Scholar]
  43. Takata T., Tanaka A., Hara M., Kondo J. N., and Domen K. Catal. Today, 1998, 44, 17 [Google Scholar]
  44. Schrauzer G. N., and Guth T. D. J. Am. Chem. Soc., 1977, 99, 7189 [Google Scholar]
  45. van Damme H., and Hall W. K. Am. Chem. Soc., 1979, 101, 4373 [Google Scholar]
  46. Sato S., and White J. M. Chem. Phys. lett., 1980, 72, 83 [Google Scholar]
  47. Kawai T., and Sakata T. Chem. Phys. Lett., 1980, 72, 87 [Google Scholar]
  48. Domen F. T., and Somorjai G. A. Nature (London), 1980, 285, 559 [Google Scholar]
  49. Sato S. New J. Chem., 1988, 12, 859 [Google Scholar]
  50. Sayama K., and Arakawa H. J. Chem. Soc., Chem. Commun., 1992, 150 [Google Scholar]
  51. Grätzel M. Acc. Chem. Res., 1981, 14, 376 [Google Scholar]
  52. Borgarello E., Kiwi J., Pelizzetti E., Visca M., and Grätzel M. Nature (London), 1981, 289, 158 [Google Scholar]
  53. Borgarello E., Kiwi J., Grätzel M., Pelizzetti E., and Visca M. J. Am. Chem. Soc., 1982, 104, 2996 [Google Scholar]
  54. Lehn J. M., Sauvage J. P., and Ziessel R. Nouv. J. Chem., 1980, 4, 623 [Google Scholar]
  55. Yamaguti K., and Sato S. Nouv. J. Chim., 1986, 1, 217 [Google Scholar]
  56. Domen K., Kudo A., Onishi T., Kosugi N., and Kuroda H. J. Phys. Chem., 1986, 90, 292 [Google Scholar]
  57. Moon S.-C., Mametsuka H., Tabata S., and Suzuki E. Catal. Today, 2000, 58, 125 [Google Scholar]
  58. Kudo A., Domen K., Maruya K., and Onishi T. Chem. Phys. Lett., 1987, 133, 517 [Google Scholar]
  59. Sayama K., and Arakawa H. J. Phys. Chem., 1993, 97, 531 [Google Scholar]
  60. Inoue Y., Asai Y., and Sato K. J. Chem. Soc., Faraday Trans., 1994, 90, 797 [Google Scholar]
  61. Takata T., Shinohara K., Tanaka A., Hara M., Kondo J. N., and Domen K. op. cit., (Ref. 2), 1997, 106, 45 [Google Scholar]
  62. Zou Z., Ye J., Sayama K., and Arakawa H. Nature, 2001, 414, 625 [Google Scholar]
/content/journals/10.1595/003214003X471212
Loading
/content/journals/10.1595/003214003X471212
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error