Skip to content
1887
Volume 47, Issue 3
  • ISSN: 0032-1400

Abstract

The molecular mechanisms of platinum cluster nucleation and growth in solution and on biopolymers have been investigated by means of first-principles molecular dynamics. In contrast with the classical picture where clusters nucleate by aggregation of metallic Pt(0) atoms, it was found that Pt-Pt bonds can form between dissolved Pt(II) complexes after only a single reduction step. Furthermore, small clusters were observed to grow by addition of unreduced [PtCl(HO)] complexes, in agreement with an autocatalytic growth mechanism. Moreover, Pt(II) ions covalently bound to biopolymers were found to act as preferential nucleation sites for the formation of clusters. This is a consequence of the presence of heterocyclic donor ligands which both enhance the electron affinity of the metal nuclei and induce the formation of metal-metal bonds that are stronger than those obtained in solution. In fact, in metallisation experiments a clean and purely heterogeneous metallisation of single DNA molecules leading to thin and uniform Pt cluster chains extending over several microns was obtained.

Loading

Article metrics loading...

/content/journals/10.1595/003214003X47398107
2003-01-01
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/pmr/47/3/pmr0047-0098.html?itemId=/content/journals/10.1595/003214003X47398107&mimeType=html&fmt=ahah

References

  1. Colombi Ciacchi, L., Pompe W., and De Vita A. J. Am. Chm. Soc., 2001, 123, 7371 [Google Scholar]
  2. Colombi Ciacchi, L., Pompe W., and De Vita A. J. Am. Chm. Soc., 2003, 107, 1755 [Google Scholar]
  3. Henglein A., and Giersig, M. J. Phys. Chm.B, 2000, 104, 6767 [Google Scholar]
  4. Belloni J., Mostafavi M., Braunstein L., Oro L. A., and Raithby P. R. Metal Clusters in Chemistry”, eds. Wiley-VHC, New York, 1999, pp. 12131247 [Google Scholar]
  5. Petroski J. M., Wang Z. L., Green T. C., and El-Sayed M. A. J. Phys. Chem. B, 1998, 102, 3316 [Google Scholar]
  6. Watzky M. A., and Finke R. G. J. Am. Chem. Soc., 1997, 119, 10382 [Google Scholar]
  7. Pan C., Pelzer K., Philippot K., Chaudret B., Dassenoy F., Lecante P., and Casanove M.-J. J. Am.Chem. Soc., 2001, 123, 7584 [Google Scholar]
  8. Aiken J. D., and Finke R. G. J. Am. Chem. Soc., 1998, 120, 9545 [Google Scholar]
  9. Ahmadi T. S., Wang Z. L., Green T. C., Hengleinand A., and El-Sayed M. A. Science, 1996, 272, 1924 [Google Scholar]
  10. Clint J. H., Collins I. R., Willams J. A., Robinson B. H., Towey T. F., Cajean P., and Kahn-Lodhi A. Faraday Discuss., 1993, 95, 219 [Google Scholar]
  11. Schmid G., Bäumle M., and Beyer N. Angew. Chem., 2000,112, 187; Angew. Chem. Int. FA, 2000, 39, 181 [Google Scholar]
  12. Shipway A. N., Katz E., and Willner I. ChemPhysChem, 2000, 1, 18 [Google Scholar]
  13. Li J.-L., Jia J.-F., Liang X.-J., Liu X., Wang J.-Z., Xue Q.-K., Li Z.-Q., Tse J. S., Zhang Z., and Zhang S. B. Phys. Rev. Lett., 2002, 88, 066101 [Google Scholar]
  14. Mertig M., Colombi Ciacchi L., Seidel R., Pompeand W., and De Vita A. Nano Lett., 2002, 2, 841 [Google Scholar]
  15. Payne M. C., Teter M. P., Allan D. C., Ariasand T. A., and Joannopoulos J. D. Rev. Mod. Phys., 1992, 64, 1045 [Google Scholar]
  16. Gunnarsson O., and Lundqvist B. I. Phys. Rev. B 1976, 13, 4274 [Google Scholar]
  17. Verlet L. Phys. Rev., 1967, 156, 98 [Google Scholar]
  18. Car R., and Parrinello M. Phys. Rev. Lett., 1985, 55, 2471 [Google Scholar]
  19. Perdew J. P., and Wang Y. Phys. Rev. B, 1992, 45, 13244 [Google Scholar]
  20. Troullier N., and Martins J. L. Phys. Rev. B, 1991, 43, 1993 [Google Scholar]
  21. Pacchioni G., and Rösch N. op. cit., (Ref. 4), pp. 13931433 [Google Scholar]
  22. Ballone P., Andreoni W., and Ekardt W. Metal Clusters”, edWiley, New York, 1999, pp. 71144 [Google Scholar]
  23. VandeVondele J., and De Vita A. Phys. Rev. B, 1999, 60, 13241 [Google Scholar]
  24. Stengel M., and De Vita A. Phys. Rev. B, 2000, 62, 15283 [Google Scholar]
  25. De Vita A., Canning A., Galli G., Gygi F., Mauriand F., and Car R. EPFL Supermmput. Rev., 1994, (6), 22 [Google Scholar]
  26. Müller T. E., Ingold F., Menzer S., Mingosand D. M. P., and Williams D. J. Org. Chem., 1997, 528, 163 [Google Scholar]
  27. Gogging P. L., and Goodfellow R. J. J. Chem. Soc.,Dalton Trans., 1973, 2355 [Google Scholar]
  28. Modinos A., and Woodward P. j. Chem. Soc., DaltonTrans., 1975, 1516 [Google Scholar]
  29. Colombi Ciacchi L.
  30. Macquet J.-P., and Theophanides T. Biopolymers 1975, 14, 781 [Google Scholar]
  31. Lippert B.Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug”, ed. Wiley-VCH, Weinheim, 1999 [Google Scholar]
  32. Appleton T., Pesch F., Wienken M., Menzer S., and Lippert B. Inorg. Chem., 1992, 31, 4410 [Google Scholar]
  33. Colombi Ciacchi L., Mertig M., Seidel R., Pompeand W., and De Vita A. Nanotechnology, 2003, in press [Google Scholar]
  34. Behrens S., Rahn K., Habicht W., Böhm K.-J., Rösner H., Dinjus E., and Unger E. Adv. Mater., 2002, 14, 1621 [Google Scholar]
  35. Whitesides G. M., Mathias J. P., and Seto C. T. Science, 1991, 254, 1312 [Google Scholar]
  36. Mertig M., Seidel R., Colombi Ciacchi L., and Pompe W. A1P Conf. Proc., 2002, 633, 449 [Google Scholar]
  37. Braun E., Eichen Y., Sivan U., and Ben-Yoseph G. Nature, 1998, 391, 775 [Google Scholar]
  38. Richter J., Mertig M., Pompe W., Mònch I., and Schackert H.K. Appl. Phys. lett., 2001, 78, 536 [Google Scholar]
  39. Richter J., Mertig M., Pompe W., and Vinzelberg H. Appl. Phys. A, 2002, 74, 725 [Google Scholar]
  40. Kratzmuller T., Appelhans D., and Braun H.-G. Adv. Mater., 1999, 11, 555 [Google Scholar]
/content/journals/10.1595/003214003X47398107
Loading
/content/journals/10.1595/003214003X47398107
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error