Skip to content
Volume 47, Issue 3
  • ISSN: 0032-1400


The molecular mechanisms of platinum cluster nucleation and growth in solution and on biopolymers have been investigated by means of first-principles molecular dynamics. In contrast with the classical picture where clusters nucleate by aggregation of metallic Pt(0) atoms, it was found that Pt-Pt bonds can form between dissolved Pt(II) complexes after only a single reduction step. Furthermore, small clusters were observed to grow by addition of unreduced [PtCl(HO)] complexes, in agreement with an autocatalytic growth mechanism. Moreover, Pt(II) ions covalently bound to biopolymers were found to act as preferential nucleation sites for the formation of clusters. This is a consequence of the presence of heterocyclic donor ligands which both enhance the electron affinity of the metal nuclei and induce the formation of metal-metal bonds that are stronger than those obtained in solution. In fact, in metallisation experiments a clean and purely heterogeneous metallisation of single DNA molecules leading to thin and uniform Pt cluster chains extending over several microns was obtained.


Article metrics loading...

Loading full text...

Full text loading...



  1. Colombi Ciacchi, L., Pompe W., and De Vita A. J. Am. Chm. Soc., 2001, 123, 7371 [Google Scholar]
  2. Colombi Ciacchi, L., Pompe W., and De Vita A. J. Am. Chm. Soc., 2003, 107, 1755 [Google Scholar]
  3. Henglein A., and Giersig, M. J. Phys. Chm.B, 2000, 104, 6767 [Google Scholar]
  4. Belloni J., Mostafavi M., Braunstein L., Oro L. A., and Raithby P. R. Metal Clusters in Chemistry”, eds. Wiley-VHC, New York, 1999, pp. 12131247 [Google Scholar]
  5. Petroski J. M., Wang Z. L., Green T. C., and El-Sayed M. A. J. Phys. Chem. B, 1998, 102, 3316 [Google Scholar]
  6. Watzky M. A., and Finke R. G. J. Am. Chem. Soc., 1997, 119, 10382 [Google Scholar]
  7. Pan C., Pelzer K., Philippot K., Chaudret B., Dassenoy F., Lecante P., and Casanove M.-J. J. Am.Chem. Soc., 2001, 123, 7584 [Google Scholar]
  8. Aiken J. D., and Finke R. G. J. Am. Chem. Soc., 1998, 120, 9545 [Google Scholar]
  9. Ahmadi T. S., Wang Z. L., Green T. C., Hengleinand A., and El-Sayed M. A. Science, 1996, 272, 1924 [Google Scholar]
  10. Clint J. H., Collins I. R., Willams J. A., Robinson B. H., Towey T. F., Cajean P., and Kahn-Lodhi A. Faraday Discuss., 1993, 95, 219 [Google Scholar]
  11. Schmid G., Bäumle M., and Beyer N. Angew. Chem., 2000,112, 187; Angew. Chem. Int. FA, 2000, 39, 181 [Google Scholar]
  12. Shipway A. N., Katz E., and Willner I. ChemPhysChem, 2000, 1, 18 [Google Scholar]
  13. Li J.-L., Jia J.-F., Liang X.-J., Liu X., Wang J.-Z., Xue Q.-K., Li Z.-Q., Tse J. S., Zhang Z., and Zhang S. B. Phys. Rev. Lett., 2002, 88, 066101 [Google Scholar]
  14. Mertig M., Colombi Ciacchi L., Seidel R., Pompeand W., and De Vita A. Nano Lett., 2002, 2, 841 [Google Scholar]
  15. Payne M. C., Teter M. P., Allan D. C., Ariasand T. A., and Joannopoulos J. D. Rev. Mod. Phys., 1992, 64, 1045 [Google Scholar]
  16. Gunnarsson O., and Lundqvist B. I. Phys. Rev. B 1976, 13, 4274 [Google Scholar]
  17. Verlet L. Phys. Rev., 1967, 156, 98 [Google Scholar]
  18. Car R., and Parrinello M. Phys. Rev. Lett., 1985, 55, 2471 [Google Scholar]
  19. Perdew J. P., and Wang Y. Phys. Rev. B, 1992, 45, 13244 [Google Scholar]
  20. Troullier N., and Martins J. L. Phys. Rev. B, 1991, 43, 1993 [Google Scholar]
  21. Pacchioni G., and Rösch N. op. cit., (Ref. 4), pp. 13931433 [Google Scholar]
  22. Ballone P., Andreoni W., and Ekardt W. Metal Clusters”, edWiley, New York, 1999, pp. 71144 [Google Scholar]
  23. VandeVondele J., and De Vita A. Phys. Rev. B, 1999, 60, 13241 [Google Scholar]
  24. Stengel M., and De Vita A. Phys. Rev. B, 2000, 62, 15283 [Google Scholar]
  25. De Vita A., Canning A., Galli G., Gygi F., Mauriand F., and Car R. EPFL Supermmput. Rev., 1994, (6), 22 [Google Scholar]
  26. Müller T. E., Ingold F., Menzer S., Mingosand D. M. P., and Williams D. J. Org. Chem., 1997, 528, 163 [Google Scholar]
  27. Gogging P. L., and Goodfellow R. J. J. Chem. Soc.,Dalton Trans., 1973, 2355 [Google Scholar]
  28. Modinos A., and Woodward P. j. Chem. Soc., DaltonTrans., 1975, 1516 [Google Scholar]
  29. Colombi Ciacchi L.
  30. Macquet J.-P., and Theophanides T. Biopolymers 1975, 14, 781 [Google Scholar]
  31. Lippert B.Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug”, ed. Wiley-VCH, Weinheim, 1999 [Google Scholar]
  32. Appleton T., Pesch F., Wienken M., Menzer S., and Lippert B. Inorg. Chem., 1992, 31, 4410 [Google Scholar]
  33. Colombi Ciacchi L., Mertig M., Seidel R., Pompeand W., and De Vita A. Nanotechnology, 2003, in press [Google Scholar]
  34. Behrens S., Rahn K., Habicht W., Böhm K.-J., Rösner H., Dinjus E., and Unger E. Adv. Mater., 2002, 14, 1621 [Google Scholar]
  35. Whitesides G. M., Mathias J. P., and Seto C. T. Science, 1991, 254, 1312 [Google Scholar]
  36. Mertig M., Seidel R., Colombi Ciacchi L., and Pompe W. A1P Conf. Proc., 2002, 633, 449 [Google Scholar]
  37. Braun E., Eichen Y., Sivan U., and Ben-Yoseph G. Nature, 1998, 391, 775 [Google Scholar]
  38. Richter J., Mertig M., Pompe W., Mònch I., and Schackert H.K. Appl. Phys. lett., 2001, 78, 536 [Google Scholar]
  39. Richter J., Mertig M., Pompe W., and Vinzelberg H. Appl. Phys. A, 2002, 74, 725 [Google Scholar]
  40. Kratzmuller T., Appelhans D., and Braun H.-G. Adv. Mater., 1999, 11, 555 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error