Skip to content
1887
Volume 47, Issue 3
  • ISSN: 0032-1400

Abstract

The molecular mechanisms of platinum cluster nucleation and growth in solution and on biopolymers have been investigated by means of first-principles molecular dynamics. In contrast with the classical picture where clusters nucleate by aggregation of metallic Pt(0) atoms, it was found that Pt-Pt bonds can form between dissolved Pt(II) complexes after only a single reduction step. Furthermore, small clusters were observed to grow by addition of unreduced [PtCl(HO)] complexes, in agreement with an autocatalytic growth mechanism. Moreover, Pt(II) ions covalently bound to biopolymers were found to act as preferential nucleation sites for the formation of clusters. This is a consequence of the presence of heterocyclic donor ligands which both enhance the electron affinity of the metal nuclei and induce the formation of metal-metal bonds that are stronger than those obtained in solution. In fact, in metallisation experiments a clean and purely heterogeneous metallisation of single DNA molecules leading to thin and uniform Pt cluster chains extending over several microns was obtained.

Loading

Article metrics loading...

/content/journals/10.1595/003214003X47398107
2003-01-01
2024-09-07
Loading full text...

Full text loading...

/deliver/fulltext/pmr/47/3/pmr0047-0098.html?itemId=/content/journals/10.1595/003214003X47398107&mimeType=html&fmt=ahah

References

  1. L. Colombi Ciacchi,, W. Pompe, A. De Vita, J. Am. Chm. Soc., 2001, 123, 7371 [Google Scholar]
  2. L. Colombi Ciacchi,, W. Pompe, A. De Vita, J. Am. Chm. Soc., 2003, 107, 1755 [Google Scholar]
  3. A. Henglein, M. Giersig,, J. Phys. Chm.B, 2000, 104, 6767 [Google Scholar]
  4. J. Belloni, M. Mostafavi, L. Braunstein, L. A. Oro, P. R. Raithby, Metal Clusters in Chemistry”, eds. Wiley-VHC, New York, 1999, pp. 12131247 [Google Scholar]
  5. J. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, J. Phys. Chem. B, 1998, 102, 3316 [Google Scholar]
  6. M. A. Watzky, R. G. Finke, J. Am. Chem. Soc., 1997, 119, 10382 [Google Scholar]
  7. C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P. Lecante, M.-J. Casanove, J. Am.Chem. Soc., 2001, 123, 7584 [Google Scholar]
  8. J. D. Aiken, R. G. Finke, J. Am. Chem. Soc., 1998, 120, 9545 [Google Scholar]
  9. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Hengleinand, M. A. El-Sayed, Science, 1996, 272, 1924 [Google Scholar]
  10. J. H. Clint, I. R. Collins, J. A. Willams, B. H. Robinson, T. F. Towey, P. Cajean, A. Kahn-Lodhi, Faraday Discuss., 1993, 95, 219 [Google Scholar]
  11. G. Schmid, M. Bäumle, N. Beyer, Angew. Chem., 2000,112, 187; Angew. Chem. Int. FA, 2000, 39, 181 [Google Scholar]
  12. A. N. Shipway, E. Katz, I. Willner, ChemPhysChem, 2000, 1, 18 [Google Scholar]
  13. J.-L. Li, J.-F. Jia, X.-J. Liang, X. Liu, J.-Z. Wang, Q.-K. Xue, Z.-Q. Li, J. S. Tse, Z. Zhang, S. B. Zhang, Phys. Rev. Lett., 2002, 88, 066101 [Google Scholar]
  14. M. Mertig, L. Colombi Ciacchi, R. Seidel, W. Pompeand, A. De Vita, Nano Lett., 2002, 2, 841 [Google Scholar]
  15. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Ariasand, J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64, 1045 [Google Scholar]
  16. O. Gunnarsson, B. I. Lundqvist, Phys. Rev. B 1976, 13, 4274 [Google Scholar]
  17. L. Verlet, Phys. Rev., 1967, 156, 98 [Google Scholar]
  18. R. Car, M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471 [Google Scholar]
  19. J. P. Perdew, Y. Wang, Phys. Rev. B, 1992, 45, 13244 [Google Scholar]
  20. N. Troullier, J. L. Martins, Phys. Rev. B, 1991, 43, 1993 [Google Scholar]
  21. G. Pacchioni, N. Rösch, op. cit., (Ref. 4), pp. 13931433 [Google Scholar]
  22. P. Ballone, W. Andreoni, W. Ekardt, Metal Clusters”, edWiley, New York, 1999, pp. 71144 [Google Scholar]
  23. J. VandeVondele, A. De Vita, Phys. Rev. B, 1999, 60, 13241 [Google Scholar]
  24. M. Stengel, A. De Vita, Phys. Rev. B, 2000, 62, 15283 [Google Scholar]
  25. A. De Vita, A. Canning, G. Galli, F. Gygi, F. Mauriand, R. Car, EPFL Supermmput. Rev., 1994, (6), 22 [Google Scholar]
  26. T. E. Müller, F. Ingold, S. Menzer, D. M. P. Mingosand, D. Williams, J. Org. Chem., 1997, 528, 163 [Google Scholar]
  27. P. L. Gogging, R. J. Goodfellow, J. Chem. Soc.,Dalton Trans., 1973, 2355 [Google Scholar]
  28. A. Modinos, P. Woodward, j. Chem. Soc., DaltonTrans., 1975, 1516 [Google Scholar]
  29. L. Colombi Ciacchi,
  30. J.-P. Macquet, T. Theophanides, Biopolymers 1975, 14, 781 [Google Scholar]
  31. B. Lippert, “Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug”, ed. Wiley-VCH, Weinheim, 1999 [Google Scholar]
  32. T. Appleton, F. Pesch, M. Wienken, S. Menzer, B. Lippert, Inorg. Chem., 1992, 31, 4410 [Google Scholar]
  33. L. Colombi Ciacchi, M. Mertig, R. Seidel, W. Pompeand, A. De Vita, Nanotechnology, 2003, in press [Google Scholar]
  34. S. Behrens, K. Rahn, W. Habicht, K.-J. Böhm, H. Rösner, E. Dinjus, E. Unger, Adv. Mater., 2002, 14, 1621 [Google Scholar]
  35. G. M. Whitesides, J. P. Mathias, C. T. Seto, Science, 1991, 254, 1312 [Google Scholar]
  36. M. Mertig, R. Seidel, L. Colombi Ciacchi, W. Pompe, A1P Conf. Proc., 2002, 633, 449 [Google Scholar]
  37. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature, 1998, 391, 775 [Google Scholar]
  38. J. Richter, M. Mertig, W. Pompe, I. Mònch, H.K. Schackert, Appl. Phys. lett., 2001, 78, 536 [Google Scholar]
  39. J. Richter, M. Mertig, W. Pompe, H. Vinzelberg, Appl. Phys. A, 2002, 74, 725 [Google Scholar]
  40. T. Kratzmuller, D. Appelhans, H.-G. Braun, Adv. Mater., 1999, 11, 555 [Google Scholar]
/content/journals/10.1595/003214003X47398107
Loading
/content/journals/10.1595/003214003X47398107
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test