Skip to content
1887
Volume 47, Issue 4
  • ISSN: 0032-1400

Abstract

Shape memory alloys (SMAs) are materials that can change their shape at a specific temperature and are used in applications as diverse as sensors, temperature sensitive switches, force actuators, fre-safety valves, orthodontic wires, fasteners, and couplers. The possible advantages offered by platinum-based SMAs involving the metals: iron, aluminium, gallium, titanium, chromium, and vanadium, are considered here and the likely systems upon which such alloys might be based are assessed. It is suggested that the most promising candidate systems are ternary-alloyed variations of the PtAl and PtTi phases, although SMAs based on PtFe have potential for low temperature applications. It appears possible to engineer a shape memory transition in the (Pt, Ni)Ti system anywhere between room temperature and 1000°C, a versatility which is probably unique among all known SMAs.

Loading

Article metrics loading...

/content/journals/10.1595/003214003X474142156
2003-01-01
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/pmr/47/4/pmr0047-0142.html?itemId=/content/journals/10.1595/003214003X474142156&mimeType=html&fmt=ahah

References

  1. Delaey L., and Haasen P. Diffusionless Transformations’, in “Materials Science and Technology”, Vol. 5, “Phase Transformations in Materials”, ed. VCH- NE, New York, 1991, pp. 341402 [Google Scholar]
  2. Dunne D. P., and Wayman C. M. Metall. Trans. A, 1973, 4A, 137 [Google Scholar]
  3. Benner L. S., Suzuki T., Meguro K., and Tanaka S. Precious Metals Science and Technology" based on Kikinzoku no Kagaku, the 100th Anniversary Commemorative Publ. of Tanaka Kikinzoku Kogyo K.K., Japan, Int. Precious Metals Inst., 1991, pp. 630- 635 [Google Scholar]
  4. Muto S., Oshima R., and Fujita F. E. Metall. Trans. A, 1988, 19A, 2723 [Google Scholar]
  5. Wayman C. M. Scr. Metall., 1971, 5, 489 [Google Scholar]
  6. Oshima R., Muto S., Fujita F. E., Hamada T., Sugiyama M., Otsuka K., and Shimizu K. 9, “Shape Memory Materials”, eds. Symp. Mater. Res. Soc., Int. Mtg. on Adv. Mater., Tokyo, Mater. Res. Soc., Pittsburgh, PA, 1989, pp. 475- 480 [Google Scholar]
  7. Oshima R., Muto S., and Hamada T. 1988, 32, (3), 110
  8. Dunne D. P., and Wayman C. M. Metall. Trans. A, 1973, 4A, 147 [Google Scholar]
  9. Muto S., Oshima R., and Fujita F. E. Metall. Trans. A, 1988, 19A, 2931 [Google Scholar]
  10. Mishima Y., Oya Y., and Suzuki T. Proc. Int. Conf. Martensitic Transformations (ICOMAT 86), 26-30 Aug., 1986, Nara, Japan, Japan Inst. of Metals, 1987, pp. 1009- 1014 [Google Scholar]
  11. Oya Y., Mishima U., Suzuki T., and Metallkd Z. 1987, 78, (H.7), 485
  12. McAlister A. J., and Kahan D. J. Bull. Alloy Phase Diagrams, 1986, 7, (1), 47 [Google Scholar]
  13. Otsuka K., and Ren X. B. Intermetallics, 1999, 7, 511 [Google Scholar]
  14. Lindquist P. G. Structure and Transformation Behaviour of Ti-(Ni,Pd) and Ti-(Ni,Pt) Alloys”, Ph.D. Thesis, University of Illinois, U.S.A., 1988 [Google Scholar]
  15. Waterstrat R. M. Metall. Trans. A, 1973, 4A, 1585 [Google Scholar]
  16. Waterstrat R. M. Metall. Trans. A, 1973, 4A, 455 [Google Scholar]
  17. Massalski T. B. “Binary Alloy Phase Diagrams”, ed. ASM, Materials Park, OH, 1986 [Google Scholar]
  18. JCPDS-ICDD, “Joint Committee for Powder Diffraction Standards - International Centre for Diffraction Data”, ver. 2.16, Int. Center for Diff. Data, Newtown Square, PA, 1995 [Google Scholar]
  19. Crystallographica, Oxford Cryosystems, version 1.31, 3 Oct., 1997; www.oxfordcryosystems.co.uk
  20. Biggs T. An Investigation into Displacive Transformations in Platinum Alloys”, Ph.D. Thesis, University of Witwatersrand, South Africa, 2001 [Google Scholar]
  21. Villars P., Prince A., and Okamoto H.Handbook of Ternary Alloy Phase Diagrams”, eds. ASM, Materials Park, OH, 1995, p. 4163 [Google Scholar]
  22. Biggs T., Cortie M. B., Witcomb M. J., and Cornish L. A. Metall. Mater. Trans. A, 2001, 32A, 1881 [Google Scholar]
  23. Biggs T., Cornish L. A., and Witcomb M. J. Proc. Microsc. Soc. South Afr., 1999, 29, 11 [Google Scholar]
  24. Kachin V. N., and Appl Rev. Phys. 1989, 24, 733
  25. Lindquist P. G., Wayman C. M., Duerig T. W., Melton K. N., Stöckel D., and Wayman C. M. Engineering Aspects of Shape Memory Alloys”, eds. Butterworth-Heinemann Ltd., London, 1990, p. 58 [Google Scholar]
  26. Biggs T., Cornish L. A., Witcomb M. J., and Cortie M. B. J. Phys. IV France, 2001, 11, Pr8-493 [Google Scholar]
  27. Shabalovskaya S. A., and Rev Int. Mater. 2001, 46, (5), 233
  28. Widu F., Drescher D., Junker R., and Bourauel C. J. Mater. Sci: Mater. Med., 1999, 10, (5), 275 [Google Scholar]
  29. Hill P. J., Adams N., Biggs T., Ellis P., Hohls J., Taylor S. S., and Wolff I. M. Mater. Sci. Eng. A, 2002, 329-331A, 295 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214003X474142156
Loading
/content/journals/10.1595/003214003X474142156
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error