Skip to content
1887
Volume 47, Issue 4
  • ISSN: 0032-1400

Abstract

Shape memory alloys (SMAs) are materials that can change their shape at a specific temperature and are used in applications as diverse as sensors, temperature sensitive switches, force actuators, fre-safety valves, orthodontic wires, fasteners, and couplers. The possible advantages offered by platinum-based SMAs involving the metals: iron, aluminium, gallium, titanium, chromium, and vanadium, are considered here and the likely systems upon which such alloys might be based are assessed. It is suggested that the most promising candidate systems are ternary-alloyed variations of the PtAl and PtTi phases, although SMAs based on PtFe have potential for low temperature applications. It appears possible to engineer a shape memory transition in the (Pt, Ni)Ti system anywhere between room temperature and 1000°C, a versatility which is probably unique among all known SMAs.

Loading

Article metrics loading...

/content/journals/10.1595/003214003X474142156
2003-01-01
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/pmr/47/4/pmr0047-0142.html?itemId=/content/journals/10.1595/003214003X474142156&mimeType=html&fmt=ahah

References

  1. L. Delaey, P. Haasen, Diffusionless Transformations’, in “Materials Science and Technology”, Vol. 5, “Phase Transformations in Materials”, ed. VCH- NE, New York, 1991, pp. 341402 [Google Scholar]
  2. D. P. Dunne, C. M. Wayman, Metall. Trans. A, 1973, 4A, 137 [Google Scholar]
  3. L. S. Benner, T. Suzuki, K. Meguro, S. Tanaka, Precious Metals Science and Technology" based on Kikinzoku no Kagaku, the 100th Anniversary Commemorative Publ. of Tanaka Kikinzoku Kogyo K.K., Japan, Int. Precious Metals Inst., 1991, pp. 630- 635 [Google Scholar]
  4. S. Muto, R. Oshima, F. E. Fujita, Metall. Trans. A, 1988, 19A, 2723 [Google Scholar]
  5. C. M. Wayman, Scr. Metall., 1971, 5, 489 [Google Scholar]
  6. R. Oshima, S. Muto, F. E. Fujita, T. Hamada, M. Sugiyama, K. Otsuka, K. Shimizu, 9, “Shape Memory Materials”, eds. Symp. Mater. Res. Soc., Int. Mtg. on Adv. Mater., Tokyo, Mater. Res. Soc., Pittsburgh, PA, 1989, pp. 475- 480 [Google Scholar]
  7. R. Oshima, S. Muto, T. Hamada, 1988, 32, (3), 110
  8. D. P. Dunne, C. M. Wayman, Metall. Trans. A, 1973, 4A, 147 [Google Scholar]
  9. S. Muto, R. Oshima, F. E. Fujita, Metall. Trans. A, 1988, 19A, 2931 [Google Scholar]
  10. Y. Mishima, Y. Oya, T. Suzuki, Proc. Int. Conf. Martensitic Transformations (ICOMAT 86), 26-30 Aug., 1986, Nara, Japan, Japan Inst. of Metals, 1987, pp. 1009- 1014 [Google Scholar]
  11. Y. Oya, U. Mishima, T. Suzuki, Z. Metallkd, 1987, 78, (H.7), 485
  12. A. J. McAlister, D. J. Kahan, Bull. Alloy Phase Diagrams, 1986, 7, (1), 47 [Google Scholar]
  13. K. Otsuka, X. B. Ren, Intermetallics, 1999, 7, 511 [Google Scholar]
  14. P. G. Lindquist, Structure and Transformation Behaviour of Ti-(Ni,Pd) and Ti-(Ni,Pt) Alloys”, Ph.D. Thesis, University of Illinois, U.S.A., 1988 [Google Scholar]
  15. R. M. Waterstrat, Metall. Trans. A, 1973, 4A, 1585 [Google Scholar]
  16. R. M. Waterstrat, Metall. Trans. A, 1973, 4A, 455 [Google Scholar]
  17. T. B. Massalski, “Binary Alloy Phase Diagrams”, ed. ASM, Materials Park, OH, 1986 [Google Scholar]
  18. JCPDS-ICDD,, “Joint Committee for Powder Diffraction Standards - International Centre for Diffraction Data”, ver. 2.16, Int. Center for Diff. Data, Newtown Square, PA, 1995 [Google Scholar]
  19. Crystallographica,, Oxford Cryosystems, version 1.31, 3 Oct., 1997; www.oxfordcryosystems.co.uk
  20. T. Biggs, An Investigation into Displacive Transformations in Platinum Alloys”, Ph.D. Thesis, University of Witwatersrand, South Africa, 2001 [Google Scholar]
  21. P. Villars, A. Prince, H. Okamoto, “Handbook of Ternary Alloy Phase Diagrams”, eds. ASM, Materials Park, OH, 1995, p. 4163 [Google Scholar]
  22. T. Biggs, M. B. Cortie, M. J. Witcomb, L. A. Cornish, Metall. Mater. Trans. A, 2001, 32A, 1881 [Google Scholar]
  23. T. Biggs, L. A. Cornish, M. J. Witcomb, Proc. Microsc. Soc. South Afr., 1999, 29, 11 [Google Scholar]
  24. V. N. Kachin, Rev. Phys. Appl, 1989, 24, 733
  25. P. G. Lindquist, C. M. Wayman, T. W. Duerig, K. N. Melton, D. Stöckel, C. M. Wayman, Engineering Aspects of Shape Memory Alloys”, eds. Butterworth-Heinemann Ltd., London, 1990, p. 58 [Google Scholar]
  26. T. Biggs, L. A. Cornish, M. J. Witcomb, M. B. Cortie, J. Phys. IV France, 2001, 11, Pr8-493 [Google Scholar]
  27. S. A. Shabalovskaya, Int. Mater. Rev, 2001, 46, (5), 233
  28. F. Widu, D. Drescher, R. Junker, C. Bourauel, J. Mater. Sci: Mater. Med., 1999, 10, (5), 275 [Google Scholar]
  29. P. J. Hill, N. Adams, T. Biggs, P. Ellis, J. Hohls, S. S. Taylor, I. M. Wolff, Mater. Sci. Eng. A, 2002, 329-331A, 295 [Google Scholar]
/content/journals/10.1595/003214003X474142156
Loading
/content/journals/10.1595/003214003X474142156
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test