Skip to content
1887
Volume 48, Issue 1
  • ISSN: 0032-1400

Abstract

Some salientfeatures of platinum group metal compounds with sulfur, selenium or tellurium, known as chalcogenides, primarily focusing on binary compounds, are described here. Their structural patterns are rationalised in terms of common structural systems. Some applications of these compounds in catalysis and materials science are described, and emerging trends in designing molecular precursors for the syntheses of these materials are highlighted.

Loading

Article metrics loading...

/content/journals/10.1595/003214004X4811629
2004-01-01
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/pmr/48/1/pmr0048-0016.html?itemId=/content/journals/10.1595/003214004X4811629&mimeType=html&fmt=ahah

References

  1. W. D. Johnston, 1Inorg J.. Nucl. Chem, 1961, 22, 13 [Google Scholar]
  2. A. Kjekshus, T. Rakke, 2Acta Chem. Scand. A, 1975, 29, 443 [Google Scholar]
  3. S. S. Lin, J. K. Huang, Y. S. Huang, 3Modern Phys. Lett. B, 1993, 7, 271 [Google Scholar]
  4. H. Ezzaouia, R. Heindl, J. Loriers, 4J. Mater. Sci. Lett, 1984, 3, 625 [Google Scholar]
  5. R. Bichsel, F. Levy, H. J. Berger, 5Phys. C, 1984, 17, L19 [Google Scholar]
  6. J. S. Kohler, 6Z. Anorg. Allg. Chem, 1997, 623, 1657 [Google Scholar]
  7. H. Zhao, H. W. Schils, C. J. Raub, 7J. Less-Common Met., 1982, 86, L13 [Google Scholar]
  8. I. Oftedal, 8Z Phys. Chem., 1928, 135, 291 [Google Scholar]
  9. K. O. Sutarno, K. I. G. Reid, 9Ca Chem n. J., 1967, 45, 1391 [Google Scholar]
  10. W. N. Stassen, R. D. Heyding, 10Ca Chem n. J.., 1968, 46, 2159 [Google Scholar]
  11. T. Stingl, B. Mueller, H. D. Lutz, 11Z Kristallogr, 1992, 202, 161 [Google Scholar]
  12. T. Stingl, B. Mueller, H. D. Lutz, 12Z Kristallogr, 1992, 202, 163 [Google Scholar]
  13. H. D. Lutz, M. Jung, G. Waschenbach, 13Z.Anorg. Allg. Chem, 1987, 554, 87 [Google Scholar]
  14. H. D. Lutz, B. Mueller, T. Schimdt, T. Stingl, 14Acta Cryst. C, 1990, 46, 2003 [Google Scholar]
  15. F. Hulliger, 15Nature, 1963, 200, 1064 [Google Scholar]
  16. H. D. Lutz, P. Willich, 16Anorg. AHg. Chem, 1977, 428, 199 [Google Scholar]
  17. I. Taguchi, H. P. Vaterlaus, R. Bischsel, F. Levy, H. Beerger, M. Yumoto, 17J. Phys. C: Solid State Phys., 1987, 20, 4241 [Google Scholar]
  18. B. Mueller, H. D. Lutz, 18Solid State Commun, 1991, 78, 469; Phys. Chem. Miner., 1991, 17, 716 [Google Scholar]
  19. T. R. Yang, Y. S. Huang, Y. K. Chyan, J. D. Cheng, 19Czec Phys h. J., 1996, 46, 2541 [Google Scholar]
  20. H. P. Vaterlaus, R. Bichsel, F. Levy, H. Berger, 20J. Phys. C: Solid State Phys, 1985, 18, 6063 [Google Scholar]
  21. M. Y. Tsay, J. K. Huang, C. S. Chen, Y. S. Huang, 21Mater. Res. Bull, 1995, 30, 85 [Google Scholar]
  22. P. C. Liao, J. K. Huang, Y. S. Huang, 22Solid State Commun, 1996, 98, 279 [Google Scholar]
  23. H. S. Sheu, Y. S. Shih, S. S. Lin, Y. S. Huang, 23Mater. Res. Bull., 1991, 26, 11 [Google Scholar]
  24. J. K. Huang, Y. S. Huang, K. K. Tiong, 24Solid State Commun, 1993, 88, 821 [Google Scholar]
  25. J. K. Huang, Y. S. Huang, T. R. Yang, 25J. Cryst. Growth, 1994, 135, 224 [Google Scholar]
  26. W. D. Johnston, R. C. Miller, D. H. Damon, 26J. Less-Common Met, 1965, 8, 272 [Google Scholar]
  27. E. F. Hocking, J. G. White, 27J. Phys. Chem, 1960, 64, 1042 [Google Scholar]
  28. F. Hulliger, 28Nature, 1964, 204, 644 [Google Scholar]
  29. E. Parthe, D. K. Hohnke, F. Hulliger, 29Acta Cryst., 1967, 23, 832 [Google Scholar]
  30. A. Kjekshus, T. Rakke, A. F. Andersen, 30Acta Chem. Scand. A, 1978, 32, 209 [Google Scholar]
  31. S. Jobic, P. Deniard, R. Brec, J. Rouxel, Drew M. G. B, W. I. F, 31David, J. Solid State Chem, 1990, 89, 315 [Google Scholar]
  32. S. Jobic, P. Deniard, R. Brec, J. Rouxel, 32Z. Anorg. Allg. Chem, 1991, 598/599, 199 [Google Scholar]
  33. H. Colell, S. Fiechter, R. Schieck, K. Diesner, W. Henrion, H. Tributsch, 33Mater. Res. Bull, 1994, 29, 1065 [Google Scholar]
  34. S. Jobic, R. Brec, C. Chateau, J. Haines, J. M. Leger, H. J. Koo, M. H. Whangbo, 34Inorg. Chem, 2000, 39, 4370 [Google Scholar]
  35. J. Beck, T. Hilbert, 35Anorg. AHg. Chem, 2000, 626, 72 [Google Scholar]
  36. P. C. Liao, C. H. Ho, Y. S. Huang, K. K. Tiong, 36J. Cryst. Growth, 1997, 171, 586 [Google Scholar]
  37. B. T. Matthias, C. E. Miller, 37Phys. Rev., 1954, 93, 1415 [Google Scholar]
  38. M. Morsli, A. Bonnet, Y. Tregouet, A. Conan, S. Jobic, R. Brec, 38Appl. Surf. Sci, 1991, 50, 500 [Google Scholar]
  39. C. Sourissean, R. Cavagnat, M. Fouassier, S. Jobic, P. Deniard, R. Brec, J. Rouxel, 39J. Solid State Chem, 1991, 91, 153 [Google Scholar]
  40. N. Matsumoto, K. Taniguchi, R. Endoh, H. Takano, S. Nagata, 40J. Low. Temp. Phys, 1999, 117, 1129 [Google Scholar]
  41. C. S. Lee, G. J. Miller, 41Inorg. Chem, 1999, 38, 5139 [Google Scholar]
  42. L. B. Barzicelli, 42Acta Cryst, 1958, 11, 75 [Google Scholar]
  43. S. Jobic, R. Brec, A. Pasturel, H. J. Koo, M. H. Whangbo, 43J. Solid State Commun, 2001, 162, 63 [Google Scholar]
  44. J. M. Leger, A. S. Pereira, J. Haines, S. Jobic, R. Brec, 44J. Phys. Chem. Solids, 2000, 61, 27 [Google Scholar]
  45. D. Hohnke, E. Parthe, 45Z Kristallogr, 1968, 127, 164 [Google Scholar]
  46. A. Kjekshus, T. Rakke, A. F. Andersen, 46Acta Chem. Scand. A, 1979, 33, 719 [Google Scholar]
  47. S. Jobic, M. Evain, R. Brec, P. Deniard, A. Jouanneaux, J. Rouxel, 47J. Solid State Chem, 1991, 95, 319 [Google Scholar]
  48. S. Geller, 48Acta Cryst, 1962, 15, 1198 [Google Scholar]
  49. W. H. Zachariasen, 49Acta Cryst, 1966, 20, 334 [Google Scholar]
  50. T. Olsen, E. Roest, F. Groenvolt, 50Acta Chem. Scand. A, 1979, 33, 251 [Google Scholar]
  51. J. Dembowski, L. Marosi, M. Essig, 51Surf. Sci. Spectra, 1993, 2, 133 [Google Scholar]
  52. J. Dembowski, L. Marosi, M. Essig, 52Surf. Sci. Spectra, 1993, 2, 104 [Google Scholar]
  53. A. Zubkov, T. Fujino, N. Sato, K. Yamada, 53J. Chem. Thermodyn, 1998, 30, 571 [Google Scholar]
  54. W. S. Khim, G. Y. Chao, L. J. Cabri, 54J. Less- Common Met, 1990, 162, 61 [Google Scholar]
  55. K. W. Richter, H. Isper, 55J. Phase Equilib, 1994, 15, 165 [Google Scholar]
  56. S. G. Rybkin, A. A. Krapivko, 56Neorg. Mater, 1992, 28, 1534 [Google Scholar]
  57. W. S. Kim, 57Met. Mater, 1996, 2, 9 [Google Scholar]
  58. D. Nguyen-Manh, P. S. Ntoahae, D. G. Pettifor, P. E. Ngoepe, 58Mol. Simul., 1999, 22, 23 [Google Scholar]
  59. M. Springborg, 59Chem. Phys, 1999, 246, 347 [Google Scholar]
  60. C. Mankai, H. Romdhani, 60J. Phys. Condens. Matter, 2000, 12, 907 [Google Scholar]
  61. J. C. W, J. A. Turner, B. A. Perkinson, 61J. Solid State Chem, 1987, 68, 28 [Google Scholar]
  62. A. Kjekshus, 62Acta Chem. Scand, 1973, 27, 1452 [Google Scholar]
  63. I. Ijjaali, J. A. Ibers, 63Z. Kristallogr, 2001, 216, 485 [Google Scholar]
  64. M. A. Pell, Y. Y. Mironov, J. A. Ibers, 64Acta. Cryst. C, 1996, 52, 1331 [Google Scholar]
  65. S. Geller, 65Acta Cryst, 1962, 15, 713 [Google Scholar]
  66. P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, 66J. Phys.: Condens. Matter, 1997, 9, 11107 [Google Scholar]
  67. J. Frimmel, M. Zdrazil, 67J. Catal, 1997, 167, 286 [Google Scholar]
  68. S. Giraldo, P. Grange, B. Delmon, 68Stud. Surf. Sci. Catal., 1993, 77, 345 [Google Scholar]
  69. Y. Aray, J. Rodriguez, 69ChemPhysChem, 2001, 2, 599 [Google Scholar]
  70. N. Hermann, M. Brorson, H. Topsoe, S. J. Liaw, R. Srinivasan, B. H. Davis, 70Catal. Lett, 2000, 65, 169; A. P. Raje, Appl. Catal., 1997, 150, 297 [Google Scholar]
  71. T. Isoda, S. Nagao, Y. Korai, I. Moclinda, 71Energy Fuels, 1996, 10, 487 [Google Scholar]
  72. M. Daage, T. C. Ho, K. L. Riley, 72Exxon Research Engineering Co, U.S. Patent5, 474, 670; 1995 [Google Scholar]
  73. T. S. Smit, K. H. Johnson, 73Chem. Phys. Lett, 1993, 212, 525 [Google Scholar]
  74. J. A. De, M. Vrinat, C. Geantet, M. Breysse, M. Vrinat, 74Catal. Today, 1991, 10, 645; De J. A. los Reyes, Appl. Catal. A: Gen, 1993, 103, 79 [Google Scholar]
  75. J. A. De, S. Gobolos, M. Vrinat, M. Breysse, 75Catal. Lett, 1990, 5, 17 [Google Scholar]
  76. V. Smelyansky, J. Hafner, G. Kresse, 76Phys. Rev. B, 1998, 58, R1782 [Google Scholar]
  77. A. Tan, S. Harris, 77Inorg. Chem, 1998, 37, 2215 [Google Scholar]
  78. E. Hillerova, M. Zdrazil, 78Collect. Czech. Chem. Commun, 1989, 54, 2648 [Google Scholar]
  79. M. Lacroix, N. Boutarfa, C. Guillard, M. Vriant, M. Breysse, 79J. Catd, 1989, 120, 473 [Google Scholar]
  80. M. Lacroix, S. Yuan, M. Breysse, C. Doremieux, F. J. Claudine, 80J. Catal, 1992, 138, 409 [Google Scholar]
  81. Y. Aray, J. Rodriguez, D. Vega, S. Coll, E. N. Rodriguez, F. Rosillo, 81J. Phys. Chem. B, 2002, 106, 13242 [Google Scholar]
  82. M. E. Grillo, V. Smelyanski, P. Sautet, J. Hafner, 82Surf. Sci., 1999, 439, 163 [Google Scholar]
  83. G. Berhault, M. Lacroix, M. Breysse, F. Mauge, C. Lavalley, 83Stud. Surf. Sci. Catal, 2000, 130 [Google Scholar]
  84. V. Smelyanski, J. Hafner, G. Kresse, 84Phys. Rev. B: Condens. Matter Mater. Phys, 1998, 58, R1782 [Google Scholar]
  85. M. E. Grillo, P. Sautet, 85J. Mol. Catal. A: Chem, 2001, 174, 239 [Google Scholar]
  86. T. S. Smit, K. H. Johnson, 86Chem. Phys. Lett, 1993, 212, 525 [Google Scholar]
  87. R. Chen, Q. Xin, J. Hu, 87J. Mol. Catal, 1992, 75, 253 [Google Scholar]
  88. C. Moreau, J. Joffre, C. Saenz, J. C. Afonso, J. J. Portefaix, 88J. Mol. Catal. A: Chem, 2000, 161, 141 [Google Scholar]
  89. S. Eijsbouts, V. H. J, R. Prins, 89J. Catal, 1988, 109, 217 [Google Scholar]
  90. G. Berhault, M. Lacroix, M. Breysse, F. Mauge, J. C. Lavalley, H. Nie, L. Qu, C. Sudhakar, V. H. J, R. Prins, 90J. Catal, 1998, 178, 555; S. Eijsbouts, J. Catal., 1991, 127, 605 [Google Scholar]
  91. M. Cattenot, J. L. Portefaix, J. Afonso, M. Breysse, M. Lacroix, G. Perot, 91J. Catal, 1998, 173, 366 [Google Scholar]
  92. S. J. Liaw, A. P. Raje, G. A. Thomas, B. H. Davis, 92Appl. Catal. A: Gen, 1997, 150, 343 [Google Scholar]
  93. M. Breysse, J. Afonso, M. Lacroix, J. L. Portefaix, M Vrinat, 93Bull Soc. Chim. Belg, 1991, 100, 923 [Google Scholar]
  94. S. Eijsbouts, V. H. J. De Beer, R. Prins, 94J. Catal, 1991, 127, 619 [Google Scholar]
  95. T. Schwarzlose, S. Fiechter, W. Jaegermann, H. Greenfield, 95Ber. Bunsen-Ges. Phys. Chem, 1992, 96, 887; F. S. Dovell, Uniroyal Inc, U.S. Patent3, 336, 386; 1967 [Google Scholar]
  96. F. S. Dovell, 96Uniroyal Inc, German Patent1, 803, 915; 1969 [Google Scholar]
  97. A. V. Mashkina, L. G. Salakhtueva, G. K. Boreskov, 97Chem. Heterocycl. Compd., 2001, 37, 546 [Google Scholar]
  98. A. V. Mashkina, A. A. Zirka, 98Kinet. Catal, 2000, 41, 521 [Google Scholar]
  99. A. A. Zirka, A. V. Mashkina, 99Kinet. Catd, 2000, 41, 388 [Google Scholar]
  100. A. V. Mashkina, T. S. Sukhareva, 100React. Kinet. Catal. Lett, 1999, 67, 103 [Google Scholar]
  101. A. V. Mashkina, L. G. Sakhaltueva, 101Kinet. Catal, 2002, 43, 107 [Google Scholar]
  102. A. V. Mashkina, L. N. Khairulina, 102Kinet. Catal, 2002, 43, 261 [Google Scholar]
  103. V. Kougionas, M. Cattenot, J. L. Zotin, J. L. Portefaix, M. Breysse, 103Appl. Catal. A: Gen, 1995, 124, 153 [Google Scholar]
  104. B. Moraweck, G. Bergeret, M. Cattenot, V. Kaugionas, C. Geantet, J. L. Portefaix, J. L. Zotin, M. Breysse, 104J. Catal, 1997, 165, 45 [Google Scholar]
  105. E. E. Kugucheva, N. A. Puchkova, V. A. Kuzmina, A. R. Medvedev, 105Neftepererab. Neftekhim, 1988, 20 [Google Scholar]
  106. M. Kubo, C. Jung, T. Kuboto, K. Seki, S. Takami, N. Koizumi, K. Omata, M. Yamada, A. Miyamoto, 106Am. Chem. Soc., Div. Fuel Chem, 2002, 47, 510 [Google Scholar]
  107. N. Koizumi, A. Mijazawa, T. Furukawa, Y. Takuro, 107Chem. Lett, 2001, 1282 [Google Scholar]
  108. F. J. Brocker, W. Aquila, K. Flick, G. Kaibel, E. Langguth, AG BASF, 108European Appl.841, 090 A3; 1998 [Google Scholar]
  109. H. Kusaka, H. Ono, 109Mitsubishi Chemical Corp, Japanese Appl.10/36, 315; 1998 [Google Scholar]
  110. M. Misono, N. Nojiri, 110Appl. Catal, 1990, 64, 1 [Google Scholar]
  111. H. Ohno, Y. Hara, H. Kusaka, M. Okuda, 111Mitsubishi Chemical Corp, European Appl.904, 836 A3; 1999 [Google Scholar]
  112. A. V. Devekki, N. V. Trushova, 112Russian Patent1, 829, 335; 1996 [Google Scholar]
  113. C. Forquy, M. Lacroix, M. Breysse, 113Elf Aquitaine, European. Appl.475, 801; 1992 [Google Scholar]
  114. L. Y. Chiang, J. W. Swirczewski, C. S. Hsu, R. B. Upasani, J. W. Swirczewski, 114J. Am. Chem. Soc, 1991, 113, 6574; L. Y. Chiang, Exxon Research Engineering Co, European Appl.0, 428, 351; 1991 [Google Scholar]
  115. L. Y. Chiang, J. W. Swirczewski, 115J. Chem. Soc., Chem. Commun., 1991, 131 [Google Scholar]
  116. K. Hara, K. Sayama, H. Arakawa, 116Chem. Lett, 1998, 387 [Google Scholar]
  117. S. J. Lee, K. J. Kim, O. B. Yang, 117Kongop Hwahak, 2002, 13, 278 [Google Scholar]
  118. N. Alonso-Vante, H. Tributsch, 118J. Electrochem. Soc., 1998, 145, 216 [Google Scholar]
  119. K. J. Duxsdad, K. J. Haller, E. E. Yu, K. M. Bourret, X. W. Lin, S. Ruvimov, Z. Liliental-Weber, J. Washbaum, 119J. Vac. Sci. Technol. B, 1997, 15, 891 [Google Scholar]
  120. S. P. Wilks, R. H. Williams, 120“Properties of Narrow Gap Cadmium-Based Compounds”, ed. P. Capper, EMIS Datareviews series, No. 10, IEE, London, 1994, p. 566 [Google Scholar]
  121. H. Cordes, R. Schmid-Fetzer, 121Semicond.Sci. Technol., 1994, 9, 2085 [Google Scholar]
  122. M. Ozawa, F. Hiei, M. Takasu, A. Ishibashi, K. Akimoto, 122Appl. Phys. Lett, 1994, 1120 [Google Scholar]
  123. R. Schmid, H. Cordes, 123DVS Ber, 1992, 141, 211 [Google Scholar]
  124. W. Storm, M. Altebockwinkel, L. Wiedmann, A. Benninghoven, J. Ziegler, A. Bauer, 124J. Vac. Sci. Technol. A, 1991, 9, 14 [Google Scholar]
  125. F. Goesmann, T. Studnitzky, R. Schmid, A. Pisch, 125J. Cryst. Growth, 1998, 184, 406 [Google Scholar]
  126. R. Schwarz, T. Studnitzky, F. Goesmann, R. Schmid-Fetzer, 126Solid State Electron, 1998, 42, 139 [Google Scholar]
  127. F. Goesmann, T. Studnitzky, R. Schmid-Fetzer, 127J. Phase Equilib., 1998, 19, 19 [Google Scholar]
  128. J. Rennie, M. Onomura, Y. Nishikawa, S. Yukie, I. Shinji, M. Ishikawa, G. Hatakoshi, 128Jp Appln. J.. Phys, 1996, 35, 1664 [Google Scholar]
  129. K. J. Duxstad, E. E. Haller, K. M. Yu, E. D. Bourret, J. M. Walker, W. X. Lin, J. Washburn, 129Appl. Phys. Lett, 1995, 67, 947 [Google Scholar]
  130. S. P. Wilks, J. P. Williams, R. H. Williams, 130“Properties of Narrow Gap Cadmium-Based Compounds”, ed. P. Capper, EMIS Datareviews series, No. 10, IEE, London, 1994, p. 280 [Google Scholar]
  131. M. Nishio, Q. Guo, H. Ogawa, 131Thin Solid Films, 1999, 343344, 508 [Google Scholar]
  132. K. Mochizuki, A. Terano, M. Momose, A. Taike, M. Kawata, J. Gotoh, S. Nakatsuka, 132J. Appl. Phys., 1995, 78, 3216 [Google Scholar]
  133. D. Kim, H. Park, J. S. Kwak, H. K. Baik, Sung- Man Lee, 133J. Electron. Mater, 1999, 28, 939 [Google Scholar]
  134. H. Kyama, T. Iwata, 134Mitsubishi Paper Mills Ltd, Japanese Patent08/095, 209; 1996 [Google Scholar]
  135. O. Tanabe, 135Fuji Photo Film Co Ltd, U.S. Patent5, 030, 545; 1991 [Google Scholar]
  136. Y. Idota, Y. Karino, H. Hayashi, H. Tomiyama, 136Fuji Photo Film Co Ltd, U.S. Patent4, 798, 779; 1989 [Google Scholar]
  137. T. Ota, K. Yoshioko, T. Akiyama, S. Mori, 137Matsushita Electric Ind. Co Ltd, Japanese Patent07/205, 548; 1995 [Google Scholar]
  138. H. S. An, 138H. Ha, Chinese Patent87/102, 319; 1988 [Google Scholar]
  139. K. Yamamoto, K. Endo, Y. Takaya, E. Kaneda, 139Mitsubishi Paper Mills Ltd, Japanese Patent62/226, 155; 1987 [Google Scholar]
  140. Y. Tonomura, J. Handa, 140Mitsubishi Paper Mills Ltd, Japanese Patent03/126, 035; 1991 [Google Scholar]
  141. Y. Idota, M. Yagihara, 141Fuji Photo Film Co Ltd., Japanese Patent61/186, 959; 1986 [Google Scholar]
  142. T. Yamamoto, A. Taniguchi, S. Dev, E. Kubota, K. Osakada, K. Kubota, 142Colloid Polym. Sci., 1991, 269, 969 [Google Scholar]
  143. A. M. Malik, N. Revaprasadu, 143J. Mater. Chem., 2002, 12, 92 [Google Scholar]
  144. J. Cheon, S. D. Talaga, J. I. Zink, 144Chem. Mater, 1997, 9, 1208 [Google Scholar]
  145. R. Yamamoto, 145Japanese Patent61/215, 661; 1986 [Google Scholar]
  146. J. C. W, J. A. Turner, B. A. Parkinson, 146J. Solid State Chem, 1987, 68, 28 [Google Scholar]
  147. F. Parsapour, D. F. Kelley, R. S. Williams, 147J. Phys. Chem. B, 1998, 102, 7971 [Google Scholar]
  148. M. Schultz, E. Matijevic, 148Colloids Surf. A, 1998, 131, 173 [Google Scholar]
  149. N. Le Nagard, A. Bouanani, H. Ezzaouia, O. Gorochov, 149J. Cryst. Growth, 1990, 104, 365 [Google Scholar]
  150. S. Narayan, V. K. Jain, T. H. Lu, S. F. Tung, 150Polyhedron, 1999, 18, 1253 [Google Scholar]
  151. A. Singhal, V. K. Jain, R. Mishra, B. Varghese, 151J. Mater. Chem, 2000, 1121 [Google Scholar]
  152. S. Dey, V. K. Jain, B. Varghese, 152J. Organomet. Chem, 2001, 623, 48 [Google Scholar]
  153. S. Dey, V. K. Jain, S. Chaudhury, A. Knoedler, F. Lissner, W. Kaim, 153J. Chem. Soc., Dalton Trans., 2001, 723 [Google Scholar]
  154. S. Dey, V. K. Jain, J. Singh, V. Trehan, K. K. Bhasin, B. Varghese, 154Eur. J. Inorg. Chem., 2003, 744 [Google Scholar]
/content/journals/10.1595/003214004X4811629
Loading
/content/journals/10.1595/003214004X4811629
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test