Skip to content
1887
Volume 48, Issue 1
  • ISSN: 0032-1400

Abstract

Some salientfeatures of platinum group metal compounds with sulfur, selenium or tellurium, known as chalcogenides, primarily focusing on binary compounds, are described here. Their structural patterns are rationalised in terms of common structural systems. Some applications of these compounds in catalysis and materials science are described, and emerging trends in designing molecular precursors for the syntheses of these materials are highlighted.

Loading

Article metrics loading...

/content/journals/10.1595/003214004X4811629
2004-01-01
2024-02-29
Loading full text...

Full text loading...

/deliver/fulltext/pmr/48/1/pmr0048-0016.html?itemId=/content/journals/10.1595/003214004X4811629&mimeType=html&fmt=ahah

References

  1. Johnston W. D. 1Inorg J.. Nucl. Chem, 1961, 22, 13 [Google Scholar]
  2. Kjekshus A., and Rakke T. 2Acta Chem. Scand. A, 1975, 29, 443 [Google Scholar]
  3. Lin S. S., Huang J. K., and Huang Y. S. 3Modern Phys. Lett. B, 1993, 7, 271 [Google Scholar]
  4. Ezzaouia H., Heindl R., and Loriers J. 4J. Mater. Sci. Lett, 1984, 3, 625 [Google Scholar]
  5. Bichsel R., Levy F., and Berger H. J. 5Phys. C, 1984, 17, L19 [Google Scholar]
  6. Kohler J. S. 6Z. Anorg. Allg. Chem, 1997, 623, 1657 [Google Scholar]
  7. Zhao H., Schils H. W., and Raub C. J. 7J. Less-Common Met., 1982, 86, L13 [Google Scholar]
  8. Oftedal I. 8Z Phys. Chem., 1928, 135, 291 [Google Scholar]
  9. Sutarno K. O., and Reid K. I. G. 9Ca Chem n. J., 1967, 45, 1391 [Google Scholar]
  10. Stassen W. N., and Heyding R. D. 10Ca Chem n. J.., 1968, 46, 2159 [Google Scholar]
  11. Stingl T., Mueller B., and Lutz H. D. 11Z Kristallogr, 1992, 202, 161 [Google Scholar]
  12. Stingl T., Mueller B., and Lutz H. D. 12Z Kristallogr, 1992, 202, 163 [Google Scholar]
  13. Lutz H. D., Jung M., and Waschenbach G. 13Z.Anorg. Allg. Chem, 1987, 554, 87 [Google Scholar]
  14. Lutz H. D., Mueller B., Schimdt T., and Stingl T. 14Acta Cryst. C, 1990, 46, 2003 [Google Scholar]
  15. Hulliger F. 15Nature, 1963, 200, 1064 [Google Scholar]
  16. Lutz H. D., and Willich P. 16Anorg. AHg. Chem, 1977, 428, 199 [Google Scholar]
  17. Taguchi I., Vaterlaus H. P., Bischsel R., Levy F., Beerger H., and Yumoto M. 17J. Phys. C: Solid State Phys., 1987, 20, 4241 [Google Scholar]
  18. Mueller B., and Lutz H. D. 18Solid State Commun, 1991, 78, 469; Phys. Chem. Miner., 1991, 17, 716 [Google Scholar]
  19. Yang T. R., Huang Y. S., Chyan Y. K., and Cheng J. D. 19Czec Phys h. J., 1996, 46, 2541 [Google Scholar]
  20. Vaterlaus H. P., Bichsel R., Levy F., and Berger H. 20J. Phys. C: Solid State Phys, 1985, 18, 6063 [Google Scholar]
  21. Tsay M. Y., Huang J. K., Chen C. S., and Huang Y. S. 21Mater. Res. Bull, 1995, 30, 85 [Google Scholar]
  22. Liao P. C., Huang J. K., and Huang Y. S. 22Solid State Commun, 1996, 98, 279 [Google Scholar]
  23. Sheu H. S., Shih Y. S., Lin S. S., and Huang Y. S. 23Mater. Res. Bull., 1991, 26, 11 [Google Scholar]
  24. Huang J. K., Huang Y. S., and Tiong K. K. 24Solid State Commun, 1993, 88, 821 [Google Scholar]
  25. Huang J. K., Huang Y. S., and Yang T. R. 25J. Cryst. Growth, 1994, 135, 224 [Google Scholar]
  26. Johnston W. D., Miller R. C., and Damon D. H. 26J. Less-Common Met, 1965, 8, 272 [Google Scholar]
  27. Hocking E. F., and White J. G. 27J. Phys. Chem, 1960, 64, 1042 [Google Scholar]
  28. Hulliger F. 28Nature, 1964, 204, 644 [Google Scholar]
  29. Parthe E., Hohnke D. K., and Hulliger F. 29Acta Cryst., 1967, 23, 832 [Google Scholar]
  30. Kjekshus A., Rakke T., and Andersen A. F. 30Acta Chem. Scand. A, 1978, 32, 209 [Google Scholar]
  31. Jobic S., Deniard P., Brec R., Rouxel J., M. G. B Drew, and F W. I. 31David, J. Solid State Chem, 1990, 89, 315 [Google Scholar]
  32. Jobic S., Deniard P., Brec R., and Rouxel J. 32Z. Anorg. Allg. Chem, 1991, 598/599, 199 [Google Scholar]
  33. Colell H., Fiechter S., Schieck R., Diesner K., Henrion W., and Tributsch H. 33Mater. Res. Bull, 1994, 29, 1065 [Google Scholar]
  34. Jobic S., Brec R., Chateau C., Haines J., Leger J. M., Koo H. J., and Whangbo M. H. 34Inorg. Chem, 2000, 39, 4370 [Google Scholar]
  35. Beck J., and Hilbert T. 35Anorg. AHg. Chem, 2000, 626, 72 [Google Scholar]
  36. Liao P. C., Ho C. H., Huang Y. S., and Tiong K. K. 36J. Cryst. Growth, 1997, 171, 586 [Google Scholar]
  37. Matthias B. T., and Miller C. E. 37Phys. Rev., 1954, 93, 1415 [Google Scholar]
  38. Morsli M., Bonnet A., Tregouet Y., Conan A., Jobic S., and Brec R. 38Appl. Surf. Sci, 1991, 50, 500 [Google Scholar]
  39. Sourissean C., Cavagnat R., Fouassier M., Jobic S., Deniard P., Brec R., and Rouxel J. 39J. Solid State Chem, 1991, 91, 153 [Google Scholar]
  40. Matsumoto N., Taniguchi K., Endoh R., Takano H., and Nagata S. 40J. Low. Temp. Phys, 1999, 117, 1129 [Google Scholar]
  41. Lee C. S., and Miller G. J. 41Inorg. Chem, 1999, 38, 5139 [Google Scholar]
  42. Barzicelli L. B. 42Acta Cryst, 1958, 11, 75 [Google Scholar]
  43. Jobic S., Brec R., Pasturel A., Koo H. J., and Whangbo M. H. 43J. Solid State Commun, 2001, 162, 63 [Google Scholar]
  44. Leger J. M., Pereira A. S., Haines J., Jobic S., and Brec R. 44J. Phys. Chem. Solids, 2000, 61, 27 [Google Scholar]
  45. Hohnke D., and Parthe E. 45Z Kristallogr, 1968, 127, 164 [Google Scholar]
  46. Kjekshus A., Rakke T., and Andersen A. F. 46Acta Chem. Scand. A, 1979, 33, 719 [Google Scholar]
  47. Jobic S., Evain M., Brec R., Deniard P., Jouanneaux A., and Rouxel J. 47J. Solid State Chem, 1991, 95, 319 [Google Scholar]
  48. Geller S. 48Acta Cryst, 1962, 15, 1198 [Google Scholar]
  49. Zachariasen W. H. 49Acta Cryst, 1966, 20, 334 [Google Scholar]
  50. Olsen T., Roest E., and Groenvolt F. 50Acta Chem. Scand. A, 1979, 33, 251 [Google Scholar]
  51. Dembowski J., Marosi L., and Essig M. 51Surf. Sci. Spectra, 1993, 2, 133 [Google Scholar]
  52. Dembowski J., Marosi L., and Essig M. 52Surf. Sci. Spectra, 1993, 2, 104 [Google Scholar]
  53. Zubkov A., Fujino T., Sato N., and Yamada K. 53J. Chem. Thermodyn, 1998, 30, 571 [Google Scholar]
  54. Khim W. S., Chao G. Y., and Cabri L. J. 54J. Less- Common Met, 1990, 162, 61 [Google Scholar]
  55. Richter K. W., and Isper H. 55J. Phase Equilib, 1994, 15, 165 [Google Scholar]
  56. Rybkin S. G., and Krapivko A. A. 56Neorg. Mater, 1992, 28, 1534 [Google Scholar]
  57. Kim W. S. 57Met. Mater, 1996, 2, 9 [Google Scholar]
  58. Nguyen-Manh D., Ntoahae P. S., Pettifor D. G., and Ngoepe P. E. 58Mol. Simul., 1999, 22, 23 [Google Scholar]
  59. Springborg M. 59Chem. Phys, 1999, 246, 347 [Google Scholar]
  60. Mankai C., and Romdhani H. 60J. Phys. Condens. Matter, 2000, 12, 907 [Google Scholar]
  61. W J. C., Turner J. A., and Perkinson B. A. 61J. Solid State Chem, 1987, 68, 28 [Google Scholar]
  62. Kjekshus A. 62Acta Chem. Scand, 1973, 27, 1452 [Google Scholar]
  63. Ijjaali I., and Ibers J. A. 63Z. Kristallogr, 2001, 216, 485 [Google Scholar]
  64. Pell M. A., Mironov Y. Y., and Ibers J. A. 64Acta. Cryst. C, 1996, 52, 1331 [Google Scholar]
  65. Geller S. 65Acta Cryst, 1962, 15, 713 [Google Scholar]
  66. Raybaud P., Hafner J., Kresse G., and Toulhoat H. 66J. Phys.: Condens. Matter, 1997, 9, 11107 [Google Scholar]
  67. Frimmel J., and Zdrazil M. 67J. Catal, 1997, 167, 286 [Google Scholar]
  68. Giraldo S., Grange P., and Delmon B. 68Stud. Surf. Sci. Catal., 1993, 77, 345 [Google Scholar]
  69. Aray Y., and Rodriguez J. 69ChemPhysChem, 2001, 2, 599 [Google Scholar]
  70. Hermann N., Brorson M., Topsoe H., Liaw S. J., Srinivasan R., and Davis B. H. 70Catal. Lett, 2000, 65, 169; Raje A. P., Appl. Catal., 1997, 150, 297 [Google Scholar]
  71. Isoda T., Nagao S., Korai Y., and Moclinda I. 71Energy Fuels, 1996, 10, 487 [Google Scholar]
  72. Daage M., Ho T. C., and Riley K. L. 72Exxon Research Engineering Co, U.S. Patent5, 474, 670; 1995 [Google Scholar]
  73. Smit T. S., and Johnson K. H. 73Chem. Phys. Lett, 1993, 212, 525 [Google Scholar]
  74. De J. A., Vrinat M., Geantet C., Breysse M., and Vrinat M. 74Catal. Today, 1991, 10, 645; los Reyes De J. A., Appl. Catal. A: Gen, 1993, 103, 79 [Google Scholar]
  75. De J. A., Gobolos S., Vrinat M., and Breysse M. 75Catal. Lett, 1990, 5, 17 [Google Scholar]
  76. Smelyansky V., Hafner J., and Kresse G. 76Phys. Rev. B, 1998, 58, R1782 [Google Scholar]
  77. Tan A., and Harris S. 77Inorg. Chem, 1998, 37, 2215 [Google Scholar]
  78. Hillerova E., and Zdrazil M. 78Collect. Czech. Chem. Commun, 1989, 54, 2648 [Google Scholar]
  79. Lacroix M., Boutarfa N., Guillard C., Vriant M., and Breysse M. 79J. Catd, 1989, 120, 473 [Google Scholar]
  80. Lacroix M., Yuan S., Breysse M., Doremieux C., and Claudine F. J. 80J. Catal, 1992, 138, 409 [Google Scholar]
  81. Aray Y., Rodriguez J., Vega D., Coll S., Rodriguez E. N., and Rosillo F. 81J. Phys. Chem. B, 2002, 106, 13242 [Google Scholar]
  82. Grillo M. E., Smelyanski V., Sautet P., and Hafner J. 82Surf. Sci., 1999, 439, 163 [Google Scholar]
  83. Berhault G., Lacroix M., Breysse M., Mauge F., and Lavalley C. 83Stud. Surf. Sci. Catal, 2000, 130 [Google Scholar]
  84. Smelyanski V., Hafner J., and Kresse G. 84Phys. Rev. B: Condens. Matter Mater. Phys, 1998, 58, R1782 [Google Scholar]
  85. Grillo M. E., and Sautet P. 85J. Mol. Catal. A: Chem, 2001, 174, 239 [Google Scholar]
  86. Smit T. S., and Johnson K. H. 86Chem. Phys. Lett, 1993, 212, 525 [Google Scholar]
  87. Chen R., Xin Q., and Hu J. 87J. Mol. Catal, 1992, 75, 253 [Google Scholar]
  88. Moreau C., Joffre J., Saenz C., Afonso J. C., and Portefaix J. J. 88J. Mol. Catal. A: Chem, 2000, 161, 141 [Google Scholar]
  89. Eijsbouts S., J V. H., and Prins R. 89J. Catal, 1988, 109, 217 [Google Scholar]
  90. Berhault G., Lacroix M., Breysse M., Mauge F., Lavalley J. C., Nie H., Qu L., Sudhakar C., J V. H., and Prins R. 90J. Catal, 1998, 178, 555; Eijsbouts S., J. Catal., 1991, 127, 605 [Google Scholar]
  91. Cattenot M., Portefaix J. L., Afonso J., Breysse M., Lacroix M., and Perot G. 91J. Catal, 1998, 173, 366 [Google Scholar]
  92. Liaw S. J., Raje A. P., Thomas G. A., and Davis B. H. 92Appl. Catal. A: Gen, 1997, 150, 343 [Google Scholar]
  93. Breysse M., Afonso J., Lacroix M., Portefaix J. L., and Vrinat M 93Bull Soc. Chim. Belg, 1991, 100, 923 [Google Scholar]
  94. Eijsbouts S., De Beer V. H. J., and Prins R. 94J. Catal, 1991, 127, 619 [Google Scholar]
  95. Schwarzlose T., Fiechter S., Jaegermann W., and Greenfield H. 95Ber. Bunsen-Ges. Phys. Chem, 1992, 96, 887; Dovell F. S., Uniroyal Inc, U.S. Patent3, 336, 386; 1967 [Google Scholar]
  96. Dovell F. S. 96Uniroyal Inc, German Patent1, 803, 915; 1969 [Google Scholar]
  97. Mashkina A. V., Salakhtueva L. G., and Boreskov G. K. 97Chem. Heterocycl. Compd., 2001, 37, 546 [Google Scholar]
  98. Mashkina A. V., and Zirka A. A. 98Kinet. Catal, 2000, 41, 521 [Google Scholar]
  99. Zirka A. A., and Mashkina A. V. 99Kinet. Catd, 2000, 41, 388 [Google Scholar]
  100. Mashkina A. V., and Sukhareva T. S. 100React. Kinet. Catal. Lett, 1999, 67, 103 [Google Scholar]
  101. Mashkina A. V., and Sakhaltueva L. G. 101Kinet. Catal, 2002, 43, 107 [Google Scholar]
  102. Mashkina A. V., and Khairulina L. N. 102Kinet. Catal, 2002, 43, 261 [Google Scholar]
  103. Kougionas V., Cattenot M., Zotin J. L., Portefaix J. L., and Breysse M. 103Appl. Catal. A: Gen, 1995, 124, 153 [Google Scholar]
  104. Moraweck B., Bergeret G., Cattenot M., Kaugionas V., Geantet C., Portefaix J. L., Zotin J. L., and Breysse M. 104J. Catal, 1997, 165, 45 [Google Scholar]
  105. Kugucheva E. E., Puchkova N. A., Kuzmina V. A., and Medvedev A. R. 105Neftepererab. Neftekhim, 1988, 20 [Google Scholar]
  106. Kubo M., Jung C., Kuboto T., Seki K., Takami S., Koizumi N., Omata K., Yamada M., and Miyamoto A. 106Am. Chem. Soc., Div. Fuel Chem, 2002, 47, 510 [Google Scholar]
  107. Koizumi N., Mijazawa A., Furukawa T., and Takuro Y. 107Chem. Lett, 2001, 1282 [Google Scholar]
  108. Brocker F. J., Aquila W., Flick K., Kaibel G., Langguth E., and BASF AG 108European Appl.841, 090 A3; 1998 [Google Scholar]
  109. Kusaka H., and Ono H. 109Mitsubishi Chemical Corp, Japanese Appl.10/36, 315; 1998 [Google Scholar]
  110. Misono M., and Nojiri N. 110Appl. Catal, 1990, 64, 1 [Google Scholar]
  111. Ohno H., Hara Y., Kusaka H., and Okuda M. 111Mitsubishi Chemical Corp, European Appl.904, 836 A3; 1999 [Google Scholar]
  112. Devekki A. V., and Trushova N. V. 112Russian Patent1, 829, 335; 1996 [Google Scholar]
  113. Forquy C., Lacroix M., and Breysse M. 113Elf Aquitaine, European. Appl.475, 801; 1992 [Google Scholar]
  114. Chiang L. Y., Swirczewski J. W., Hsu C. S., Upasani R. B., and Swirczewski J. W. 114J. Am. Chem. Soc, 1991, 113, 6574; Chiang L. Y., Exxon Research Engineering Co, European Appl.0, 428, 351; 1991 [Google Scholar]
  115. Chiang L. Y., and Swirczewski J. W. 115J. Chem. Soc., Chem. Commun., 1991, 131 [Google Scholar]
  116. Hara K., Sayama K., and Arakawa H. 116Chem. Lett, 1998, 387 [Google Scholar]
  117. Lee S. J., Kim K. J., and Yang O. B. 117Kongop Hwahak, 2002, 13, 278 [Google Scholar]
  118. Alonso-Vante N., and Tributsch H. 118J. Electrochem. Soc., 1998, 145, 216 [Google Scholar]
  119. Duxsdad K. J., Haller K. J., Yu E. E., Bourret K. M., Lin X. W., Ruvimov S., Liliental-Weber Z., and Washbaum J. 119J. Vac. Sci. Technol. B, 1997, 15, 891 [Google Scholar]
  120. Wilks S. P., Williams R. H., 120“Properties of Narrow Gap Cadmium-Based Compounds”, ed. and Capper P. EMIS Datareviews series, No. 10, IEE, London, 1994, p. 566 [Google Scholar]
  121. Cordes H., and Schmid-Fetzer R. 121Semicond.Sci. Technol., 1994, 9, 2085 [Google Scholar]
  122. Ozawa M., Hiei F., Takasu M., Ishibashi A., and Akimoto K. 122Appl. Phys. Lett, 1994, 1120 [Google Scholar]
  123. Schmid R., and Cordes H. 123DVS Ber, 1992, 141, 211 [Google Scholar]
  124. Storm W., Altebockwinkel M., Wiedmann L., Benninghoven A., Ziegler J., and Bauer A. 124J. Vac. Sci. Technol. A, 1991, 9, 14 [Google Scholar]
  125. Goesmann F., Studnitzky T., Schmid R., and Pisch A. 125J. Cryst. Growth, 1998, 184, 406 [Google Scholar]
  126. Schwarz R., Studnitzky T., Goesmann F., and Schmid-Fetzer R. 126Solid State Electron, 1998, 42, 139 [Google Scholar]
  127. Goesmann F., Studnitzky T., and Schmid-Fetzer R. 127J. Phase Equilib., 1998, 19, 19 [Google Scholar]
  128. Rennie J., Onomura M., Nishikawa Y., Yukie S., Shinji I., Ishikawa M., and Hatakoshi G. 128Jp Appln. J.. Phys, 1996, 35, 1664 [Google Scholar]
  129. Duxstad K. J., Haller E. E., Yu K. M., Bourret E. D., Walker J. M., Lin W. X., and Washburn J. 129Appl. Phys. Lett, 1995, 67, 947 [Google Scholar]
  130. Wilks S. P., Williams J. P., Williams R. H., 130“Properties of Narrow Gap Cadmium-Based Compounds”, ed. and Capper P. EMIS Datareviews series, No. 10, IEE, London, 1994, p. 280 [Google Scholar]
  131. Nishio M., Guo Q., and Ogawa H. 131Thin Solid Films, 1999, 343344, 508 [Google Scholar]
  132. Mochizuki K., Terano A., Momose M., Taike A., Kawata M., Gotoh J., and Nakatsuka S. 132J. Appl. Phys., 1995, 78, 3216 [Google Scholar]
  133. Kim D., Park H., Kwak J. S., Baik H. K., and Lee Sung- Man 133J. Electron. Mater, 1999, 28, 939 [Google Scholar]
  134. Kyama H., and Iwata T. 134Mitsubishi Paper Mills Ltd, Japanese Patent08/095, 209; 1996 [Google Scholar]
  135. Tanabe O. 135Fuji Photo Film Co Ltd, U.S. Patent5, 030, 545; 1991 [Google Scholar]
  136. Idota Y., Karino Y., Hayashi H., and Tomiyama H. 136Fuji Photo Film Co Ltd, U.S. Patent4, 798, 779; 1989 [Google Scholar]
  137. Ota T., Yoshioko K., Akiyama T., and Mori S. 137Matsushita Electric Ind. Co Ltd, Japanese Patent07/205, 548; 1995 [Google Scholar]
  138. An H. S. 138H. Ha, Chinese Patent87/102, 319; 1988 [Google Scholar]
  139. Yamamoto K., Endo K., Takaya Y., and Kaneda E. 139Mitsubishi Paper Mills Ltd, Japanese Patent62/226, 155; 1987 [Google Scholar]
  140. Tonomura Y., and Handa J. 140Mitsubishi Paper Mills Ltd, Japanese Patent03/126, 035; 1991 [Google Scholar]
  141. Idota Y., and Yagihara M. 141Fuji Photo Film Co Ltd., Japanese Patent61/186, 959; 1986 [Google Scholar]
  142. Yamamoto T., Taniguchi A., Dev S., Kubota E., Osakada K., and Kubota K. 142Colloid Polym. Sci., 1991, 269, 969 [Google Scholar]
  143. Malik A. M., and Revaprasadu N. 143J. Mater. Chem., 2002, 12, 92 [Google Scholar]
  144. Cheon J., Talaga S. D., and Zink J. I. 144Chem. Mater, 1997, 9, 1208 [Google Scholar]
  145. Yamamoto R. 145Japanese Patent61/215, 661; 1986 [Google Scholar]
  146. W J. C., Turner J. A., and Parkinson B. A. 146J. Solid State Chem, 1987, 68, 28 [Google Scholar]
  147. Parsapour F., Kelley D. F., and Williams R. S. 147J. Phys. Chem. B, 1998, 102, 7971 [Google Scholar]
  148. Schultz M., and Matijevic E. 148Colloids Surf. A, 1998, 131, 173 [Google Scholar]
  149. Le Nagard N., Bouanani A., Ezzaouia H., and Gorochov O. 149J. Cryst. Growth, 1990, 104, 365 [Google Scholar]
  150. Narayan S., Jain V. K., Lu T. H., and Tung S. F. 150Polyhedron, 1999, 18, 1253 [Google Scholar]
  151. Singhal A., Jain V. K., Mishra R., and Varghese B. 151J. Mater. Chem, 2000, 1121 [Google Scholar]
  152. Dey S., Jain V. K., and Varghese B. 152J. Organomet. Chem, 2001, 623, 48 [Google Scholar]
  153. Dey S., Jain V. K., Chaudhury S., Knoedler A., Lissner F., and Kaim W. 153J. Chem. Soc., Dalton Trans., 2001, 723 [Google Scholar]
  154. Dey S., Jain V. K., Singh J., Trehan V., Bhasin K. K., and Varghese B. 154Eur. J. Inorg. Chem., 2003, 744 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214004X4811629
Loading
/content/journals/10.1595/003214004X4811629
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error