Skip to content
1887
Volume 48, Issue 3
  • ISSN: 0032-1400

Abstract

Magnus’ green salt is a quasi-one-dimensional compound of composition [Pt(NH3)][PtCl] comprising linear arrays of platinum(II) ions. It is essentially insoluble in water and organic solvents and therefore difficult to process, which limits its use. Recently, soluble and thus processible derivatives of Magnus’ green salt have been synthesised by substituting the ammonia by linear and branched aminoalkanes. The Pt-Pt distances and the properties of these Magnus’ salt derivatives depend on the detailed structure of the aminoalkane. In particular, in compounds with branched aminoalkanes weak but noteworthy interactions arise between adjacent platinum atoms, as is evident from their colour, their electrical conductivity, and their UV and IR spectra. Compounds with optically active branched aminoalkanes exhibit circular dichroism with a bisignate Cotton effect and unusually high absolute values for the chiral anisotropy factors. The complex [Pt(NHdmoc)][PtCl] with dmoc designating (S)-3,7-dimethyloctyl is of particular importance since its colour and electrical conductivity strongly resemble those of Magnus’ green salt. Films of [Pt(NHdmoc)][PtCl] can function as an active semiconducting layer in field effect transistors. Remarkably, such devices have superior stability in air and water to unprotected field effect transistors fabricated with typical organic polymers. Hence, Magnus’ salt derivatives might find use in components of mass-produced “plastic electronics”.

Loading

Article metrics loading...

/content/journals/10.1595/003214004X48391100
2004-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/pmr/48/3/pmr0048-0091.html?itemId=/content/journals/10.1595/003214004X48391100&mimeType=html&fmt=ahah

References

  1. Magnus G. Pogg. Ann., 1828, 14, 239 [Google Scholar]
  2. Magnus G. Ann. Chim. Phys. Sér. 2, 1829, 40, 110 [Google Scholar]
  3. Gros J. Ann. Pharm., 1838, 27, 241 [Google Scholar]
  4. Reiset J. Compt. Rend. Acad. Sci., 1840, 10, 870 [Google Scholar]
  5. Reiset J. Ann. Chim. Phys., Sér. 3, 1844, 11, 417 [Google Scholar]
  6. Clarke F. W., and Owens M. E. Am. Chem. J., 1881, 3, 350 [Google Scholar]
  7. Rodgers M. L., and Martin D. S. Polyhedron, 1987, 6, 225 [Google Scholar]
  8. Martin D. S., Rush R. M., Kroening R. F., and Fanwick P. E. Inorg. Chem., 1973, 12, 301 [Google Scholar]
  9. Peyrone M. Ann. Chem. Pharm., 1844, 51, 1 [Google Scholar]
  10. Yamada S. J. Am. Chem. Soc., 1951, 73, 1579 [Google Scholar]
  11. Houlding V. H., and Frank A. J. Inorg. Chem., 1985, 24, 3664 [Google Scholar]
  12. Honda K., Chiba K., Tsuchida E., and Frank A. J. J. Mater. Sci. Lett., 1989, 24, 4004 [Google Scholar]
  13. Palkin V. A., Kuzina T. A., Kuz’mina N. N, and Shchelokov R. N. Zh. Neorg. Khim., 1980, 25, 1291; Engl. transl. Russ. J. Inorg. Chem., 1980, 25, 720 [Google Scholar]
  14. Palkin V. A., Kuz’mina N. N., and Chernyaev I. I. Zh. Neorg. Khim., 1965, 10, 41; Engl. transl. Russ. J. Inorg. Chem., 1965, 10, 23 [Google Scholar]
  15. Peyrone M. Ann. Chim. Phys. Sér. 3, 1844, 12, 193 [Google Scholar]
  16. Reiset J. J. Prakt. Chem., 1844, 33, 21 [Google Scholar]
  17. Reiset J. Compt. Rend. Acad. Sci., 1844, 18, 1100 [Google Scholar]
  18. Reiset J. Ann. Chim., 1845, (no volume), 161 [Google Scholar]
  19. Gerhardt C. Compt. Rend. Acad. Sci., 1850, 31, 241 [Google Scholar]
  20. Gerhardt C. J. Prakt. Chem., 1851, 53, 345 [Google Scholar]
  21. Liebig J., and Wöhler F. “Jahresber. Fortschritte Rein. Pharm. Techn. Chem. Phys. Mineral. Geol.”, 1850, (no volume), 335 [Google Scholar]
  22. Liebig J., and Kopp H. “Jahresber. Fortschritte Rein. Pharm. Techn. Chem. Phys. Mineral. Geol.”, 1856, (no volume), 413 [Google Scholar]
  23. Wöhler F., and Liebig J. Ann. Chem. Pharm., 1850, 76, 307 [Google Scholar]
  24. Jörgensen S. M. J. Prakt. Chem., 1886, 141, 489 [Google Scholar]
  25. Jörgensen S. M., and Sörensen S. P. L. Z. Anorg. Chem., 1906, 48, 441 [Google Scholar]
  26. Hantzsch A., and Rosenblatt F. Z. Z. Anorg. Allg. Chem., 1930, 187, 241 [Google Scholar]
  27. Atoji M., Richardson J. W, and Rundle R. E. J. Am. Chem. Soc., 1957, 79, 3017 [Google Scholar]
  28. Yoshida T., Yamagata T., Tulip T. H., Ibers J. A., and Otsuka S. J. Am. Chem. Soc., 1978, 100, 1064 [Google Scholar]
  29. Braunstein P., Jud J.-M., Dusausoy Y., and Fischer J. Organometallics, 1983, 2, 180 [Google Scholar]
  30. Frew A. A., Hill R. H., Manojlovic-Muir L., Muir K. W., and Puddephatt R. J. J. Chem. Soc., Chem. Commun., 1982, 198 [Google Scholar]
  31. Goodfellow R. J., Herbert I. R., and Orpen A. G. J. Chem. Soc., Chem. Commun., 1983, 1386 [Google Scholar]
  32. Brown M. P., Puddephatt R. J., Rashidi M., Manojlovic-Muir L., Muir K. W., Solomun T., and Seddon K. R. Inorg. Chim. Acta, 1977, 23, L33 [Google Scholar]
  33. Ciriano M., Howard J.A.K., Spencer J. L., Stone F.A.G., and Wadepohl H. J. Chem. Soc., Dalton Trans., 1979, 1749 [Google Scholar]
  34. Modinos A., and Woodward P. J. Chem. Soc., Dalton Trans., 1975, 1516 [Google Scholar]
  35. Taylor N. J., Chieh P. C., and Carty A. J. J. Chem. Soc., Chem. Commun., 1975, 448 [Google Scholar]
  36. Interrante L. V., and Messmer R. P. Inorg Chem., 1971, 10, 1175 [Google Scholar]
  37. Miller J. R. J. Chem. Soc., 1961, 4452 [Google Scholar]
  38. Peyrone D.-M. Ann. Chim. Phys. Sér. 3, 1846, 16, 462 [Google Scholar]
  39. Wittstein G. C. Repertorium Pharm., 1848, 100, 456 [Google Scholar]
  40. Vauquelin Ann. Chim. Sér. 2, 1817, 5, 260 [Google Scholar]
  41. Vauquelin Ann. Chim. Sér. 2, 1817, 5, 392 [Google Scholar]
  42. Hertel E., and Schneider K. Z. Anorg Allg. Chem., 1931, 202, 77 [Google Scholar]
  43. Bremi J., Brovelli D., Caseri W., Smith P., Hähner G., and Tervoort T. Chem. Mater., 1999, 11, 977 [Google Scholar]
  44. Bremi J., Gramlich V., Caseri W., and Smith P. Inorg. Chim. Acta, 2001, 322, 23 [Google Scholar]
  45. Fontana M., Chanzy H., Caseri W. R., Smith P., Schenning A. P. H. J., Meijer E. W., and Gröhn F. Chem. Mater., 2002, 14, 1730 [Google Scholar]
  46. Yamada S., and Tsuchida R. Bull. Chem. Soc. Jpn., 1958, 31, 813 [Google Scholar]
  47. Wurtz A. Ann. Chim. Phys. Sér. 3, 1850, 30, 443 [Google Scholar]
  48. Miller J. R. Proc. Chem. Soc., 1960, 318 [Google Scholar]
  49. Cradwick M. E., Hall D., and Phillips R. K. Acta Cryst. B, 1971, 27, 480 [Google Scholar]
  50. Tschugaeff L. Ber. Deutsch. Chem. Ges., 1907, 40, 173 [Google Scholar]
  51. Miller J. R. J. Chem. Soc., 1965, 713 [Google Scholar]
  52. Gordon C. Ber. Deutsch. Chem. Ges., 1870, 3, 174 [Google Scholar]
  53. Bremi J., Caseri W., and Smith P. J. Mater. Chem., 2001, 11, 2593 [Google Scholar]
  54. Day P., Orchard A. F., Thomson A. J., and Williams R. J. P. J. Chem. Phys., 1965, 42, 1973 [Google Scholar]
  55. Anex B. G., Ross M. E., and Hedgcock M. W. J. Chem. Phys., 1967, 46, 1090 [Google Scholar]
  56. Fontana M., Caseri W. R., Smith P., Schenning A. P. H. J., and Meijer E. W. Inorg. Chim. Acta, 2003, 353, 320 [Google Scholar]
  57. Rodger A. Inorg. Chim. Acta, 1986, 122, 25 [Google Scholar]
  58. Munir C., Ahmad N., Alam A. S., and Danish M. Arab. J. Sci. Eng., 1994, 19, 509 [Google Scholar]
  59. Slyudkin O. P., Kerzhentsev M. A., Slyudkina I. S., and Volshtein L. M. Zh. Neorg. Khim., 1977, 22, 3299; Engl. transl. Russ. J. Inorg. Chem., 1977, 22, 1798 [Google Scholar]
  60. Peacock R. D., and Stewart B. Coord. Chem. Rev., 1982, 46, 129 [Google Scholar]
  61. Slyudkin O. P. Zh. Neorg. Khim., 1983, 28, 2300; Engl. transl. Russ. J. Inorg. Chem., 1983, 28, 1303 [Google Scholar]
  62. Saito R., and Kidani Y. Bull. Chem. Soc. Jpn., 1983, 56, 449 [Google Scholar]
  63. Saito R., and Kidani Y. Bull. Chem. Soc. Jpn., 1984, 57, 3430 [Google Scholar]
  64. Hawkins C. J., and Martin J. Inorg. Chem., 1982, 21, 1074 [Google Scholar]
  65. Summa G. M., and Scott B. A. Inorg. Chem., 1980, 19, 1079 [Google Scholar]
  66. Rao C. N. R., and Bhat S. N. Inorg. Nucl Chem. Lett., 1969, 5, 531 [Google Scholar]
  67. Interrante L. V. J. Chem. Soc., Chem. Commun., 1972, 302 [Google Scholar]
  68. Gomm P. S., Thomas T. W., and Underhill A. E. J. Chem. Soc. A, 1971, 2154 [Google Scholar]
  69. Mehran F., and Scott B. A. Phys. Rev. Lett., 1973, 31, 99 [Google Scholar]
  70. Interrante L. V. Adv. Chem. Ser., 1976, 150, 1 [Google Scholar]
  71. Mehran F., and Interrante L. V. Solid State Commun., 1976, 18, 1031 [Google Scholar]
  72. Kubota R., Kobayashi H., Tsujikawa L., and Enoki T. Int. J. Quantum Rev., 1980, 18, 1533 [Google Scholar]
  73. Tanaka M., Kojima N., Ajiro Y., Ban T., and Tsujikawa I. Synth. Met., 1987, 19, 967 [Google Scholar]
  74. Raewsky Compt. Rend. Acad. Sci., 1847, 25, 794 [Google Scholar]
  75. Fontana M., Chanzy H., Stutzmann N., Caseri W. R., and Smith P. Thin Solid Films, 2004, 449, 34 [Google Scholar]
  76. Caseri W. R., Chanzy H. D., Feldman K., Fontana M., Smith P., Tervoort T. A., Goossens J. G. P., Meijer E. W., Schenning A. P. H. J., Dolbnya I. P., Debije M. G., de Haas M. P., Warman J. M., van de Craats A. M., Friend R. H., Sirringhaus H., and Stutzmann N. Adv. Mater., 2003, 15, 125 [Google Scholar]
  77. Wittmann J.-C., and Smith P. Nature, 1991, 352, 414 [Google Scholar]
  78. Schouten P. G., Warman J. M., and de Haas M. P. J. Phys. Chem., 1993, 97, 9863 [Google Scholar]
  79. Gelinck G. H., and Warman J. M. J. Phys. Chem., 1996, 100, 20035 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214004X48391100
Loading
/content/journals/10.1595/003214004X48391100
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error