Skip to content
1887
Volume 26, Issue 1
  • ISSN: 0032-1400

Abstract

A very substantial amount of additional information has been published concerning hydrides of the platinum group metals over the two decades since the hydrides of palladium and palladium alloys were the subject of an earlier review article in this Journal. In addition to the many articles in the general literature, the subject matter has formed a major part of the programmes of several scientific conferences and of a number of books and monographs appearing over this period. Furthermore, silver-palladium diffusion tubes are incorporated into hydrogen generators built by Johnson Matthey, and utilised for such diverse applications as the hydrogenation of edible oils, manufacture of semiconductors, annealing of stainless steel and the cooling of power station alternators. In view of the considerable interest being shown in both theoretical and technical aspects of these systems this unusually long review is presented, and will be published in parts during the year.

Loading

Article metrics loading...

/content/journals/10.1595/003214082X2612027
1982-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/pmr/26/1/pmr0026-0020.html?itemId=/content/journals/10.1595/003214082X2612027&mimeType=html&fmt=ahah

References

  1. Burch R. Chemical Physics of Solids and Their Surfaces”, Spec. Period. Rep. R. Soc. Chem., 1980, 8, p. 1 [Google Scholar]
  2. Muetterties E. L. Transition Metal Hydrides” New York, Marcel Dekker, 1971 [Google Scholar]
  3. Lewis F. A. Platinum Metals Rev., 1960, 4, (4), 132; [Google Scholar]
  4. 1961, 5, (1), 21
  5. Lewis F. A. The Palladium Hydrogen System”, London, New York, Academic Press, 1967 [Google Scholar]
  6. Engelhard Ind. Tech. Bull. (Thomas Graham Commemorative Issue), Ed. Flanagan T. B. 1966, 7, (1,2), 962 [Google Scholar]
  7. Libowitz G. G. The Solid-State Chemistry of Binary Metal Hydrides”, New York, W. A. Benjamin, 1965 [Google Scholar]
  8. Mackay K. M. Hydrogen Compounds of the Metallic Elements”, London, Spon, 1966 [Google Scholar]
  9. Shaw B. L. Inorganic Hydrides”, Oxford, Pergamon, 1967 [Google Scholar]
  10. Goldschmidt H. J. Interstitial Alloys”, London, Butterworth, 1967 [Google Scholar]
  11. Mueller W. M., Blackledge J. P., and Libowitz G. G. Metal Hydrides”, New York, Academic, 1968 [Google Scholar]
  12. Fast J. D. Gases in Metals”, Eindhoven, Philips, 1976 [Google Scholar]
  13. Lewis F. A. Platinum Metals Rev., 1968, 12, (4), 140; 1970, 14, (4), 131; 1971, 15, (4), 144 [Google Scholar]
  14. Hydrogen in Metals”, Jül-Conf-6, Kernfors-chungsanlage Jülich, 1972 [Google Scholar]
  15. Hydrogen in Metals”, Proc. Birmingham Meeting, organ. I. R. Harris and J. P. G. Farr, Lausanne, Elsevier, 1976 [Google Scholar]
  16. and Züchner H.Hydrogen in Metals”, Proc. Int. Meeting at Münster, Ed. Wicke E., Wiesbaden, Akad. Verlag, 1979 [Google Scholar]
  17. Miami Int. Symp. Metal-Hydrogen Systems, Ed. Veziroglu T. N. Oxford, Pergamon, 1982
  18. Alefeld G., and Volkl J.Hydrogen in Metals”, Top. in Appl Phys., 28 and 29, Ed. Berlin, Springer, 1978 [Google Scholar]
  19. Int. Conf. Quantum Crystals, Fiz. Nizk. Temp. (Kiev), 1975, 1, (5, 6, 7), 540897 [Google Scholar]
  20. Lewis F. A. Int. J. Hydrogen Energy, 1981, 6, (3), 319 [Google Scholar]
  21. Clewley J. D., Curran T., Flanagan T. B., and Oates W. A. J. Chem. Soc., Faraday Trans. I, 1973, 69, (2), 449 [Google Scholar]
  22. Burch R., and Francis N. B. op. cit., 1973, 69, (11), 1978
  23. Picard C., Kleppa O. J., and Boureau G. J. Chem. Phys., 1978, 69, (12), 5549 [Google Scholar]
  24. Everett D. H., and Sermon P. A. Z. Phys. Chem. (Frankfurt am Main), 1979, 114, 109 [Google Scholar]
  25. Bowerman B. S., Biehl G. E., Wulff C. A., and Flanagan T. B. Ber. Bunsenges. Phys. Chem., 1980, 84, (6), 536 [Google Scholar]
  26. Tkacz M., and Baranowski B. Roczn. Chem., 1976, 50, 2159 [Google Scholar]
  27. Buck H., and Alefeld G. Phys. Status Solidi, 1972, 49, (1), 317 [Google Scholar]
  28. Frieske H. Ber. Bunsenges. Phys. Chem., 1973, 77, (1), 48; [Google Scholar]
  29. Wicke E., Blaurock J., Miller R. J., Brun T. O., and Satterthwaite C. B. Phys. Rev. B, 1978, 18, (9), 5054 [Google Scholar]
  30. Carstanjen H. D., Dünstl J., Löbl G., and Sizmann R. Phys. Status Solid A, 1978, 45, 529 [Google Scholar]
  31. Rowe J. M., Rush J. J., Smith H. G., Mostoller M., and Flotow H. E. Phys. Rev. Lett., 1974, 33, (21), 1297 [Google Scholar]
  32. Makliet C. A., Gillespie D. J., and Schindler A. I. J. Phys. Chem. Solids, 1976, 37, (3), 379 [Google Scholar]
  33. Suleymanov N. M., Kharakhashyan E. G., Drulis D., and Staliński B. J. Less-Common Met., 1979, 65, (2), p 67 [Google Scholar]
  34. Hsu D. K., and Leisure R. G. Phys. Rev. B, 1979, 20, (4), 1339; [Google Scholar]
  35. Rafizadeh H. A. see also ibid., 1981, 23, (4), 1628
  36. Smith T. F., and White G. K. J. Phys. F, 1977, 7, (6), 1029; [Google Scholar]
  37. Abbenseth R., and Wipf H. ibid., 1980, 10, 353
  38. Mazzolai F. M., Bordoni P. G., and Lewis F. A. op. cit., 1980, 10, 781;
  39. ibid., 1981, 11, (2), 337;
  40. J. Less-Common Met., 1980, 74, (1), 137 [Google Scholar]
  41. Brill P., and Voitländer J. Ber. Bunsenges. Phys. Chem., 1973, 77, (12), 1097 [Google Scholar]
  42. de Ribaupierre Y., and Manchester F. D. J. Phys. C, 1974, 7, (12), 2126, 2140; [Google Scholar]
  43. ibid., 1975, 8, (9), 1339
  44. Burch R., and Lewis F. A. Trans. Faraday Soc., 1970, 66, (3), 727 [Google Scholar]
  45. Lewis F. A., and Obermann A. J. Less-Common Met., 1976, 49, (1/2), 349 [Google Scholar]
  46. Lewis F. A. Surf. Technol., 1980, 11, (1), 1 [Google Scholar]
  47. Zimmermann G. J. J. Less-Common Met., 1976, 49, (1/2), 49 [Google Scholar]
  48. Burch R., and Lewis F. A. op. cit., ref. 5, P 36
  49. Schonnagel H. J., and Wagner C. Ber. Bunsenges. Phys. Chem., 1965, 69, (8), 699 [Google Scholar]
  50. Auer W., and Grabke H.J. op. cit., 1974, 78, (1), 58
  51. Bucur R. V. Surf. Sci., 1977, 62, (2), 519; [Google Scholar]
  52. Bucur R. V., Mecea V., and Indrea E. J. Less-Common Met., 1976, 49, (1, 2), 147 [Google Scholar]
  53. Baranowski B. Platinum Metals Rev., 1972, 16, (1), 10; [Google Scholar]
  54. Ber. Bunsenges. Phys. Chem., 1972, 76, (8), 714; [Google Scholar]
  55. ref. 17, 29, p. 157; Z. Phys. Chem. (Frankfurt am Main), 1979, 114, 59 [Google Scholar]
  56. Buckel W. Z. Phys. Chem. (Frankfurt am Main), 1979, 116, 135; [Google Scholar]
  57. Skośkiewicz T., Szafrański A. W., Bujnowski W., and Baranowski B. J. Phys. C., 1974, 7, 2670; [Google Scholar]
  58. van Dongen J. C. M., and Szanfrański A. W. Z. Phys. Chem. (Frankfurt am Main), 1979, 116, 149; [Google Scholar]
  59. Wagner H. Phy. Status Solid. A, 1981, 65, K69 [Google Scholar]
  60. Lewis F. A., McFall W. D., and Witherspoon T. C. Z. Phys. Chem. (Frankfurt am Main), 1979, 114, 239; [Google Scholar]
  61. Watanabe K., and Fukai Y. see also, J. Phys. F, 1980, 10, 1795 [Google Scholar]
  62. Miller R. J., Brun T. O., and B C. Phys. Rev. B, 1978, 18, (9), 5054 [Google Scholar]
  63. Burger J. P., Senoussi S., and Soufaché B. J. Less-Common Met., 1976, 49, (1, 2), 213; [Google Scholar]
  64. Arzoumanian C., Burger J.P., Dumoulin L., and Nedellec P. Z. Phy. Chem. (Frankfurt am Main), 1979, 116, 117; [Google Scholar]
  65. Foiles C. L. see also J. Phys F, 1979, 9, 2381 [Google Scholar]
  66. Lewis F. A., and McKee S. G. op. cit., ref. 16
  67. Völkl J., Wollenweber G., Klatt K.-H., and Alefeld G. Z. Naturforsch., A, 1971, 26, (5), 922 [Google Scholar]
  68. Barton J. C., Leitch W. F. N., and A F. Electrochim. Acta., 1966, 11, (8), 1171 [Google Scholar]
  69. Lewis F. A., Leitch W. F. N., and Murray A. Surf. Technol., 1978, 7, (5), 385; [Google Scholar]
  70. Lewis F. A. J. Less-Common Met., 1980, 74, (2), 363 [Google Scholar]
  71. Hawkesworth M. R., and Farr J. P. G. J. Electroanal. Chem. Interfacial Electrochem., 1981, 119, (1), 49 [Google Scholar]
  72. Bucur R.V. J.Electroanal. Chem., 1965, 10, (1), 8 [Google Scholar]
  73. Musket R.G. J. Less-Common Met., 1976, 45, 173 [Google Scholar]
  74. Gileadi E., Fullenwider M. A., and Bockris J. O’M. J. Electrochem. Soc., 966, 113, (9), 926 [Google Scholar]
  75. Čermák J., Kufudakis A., and Gardavská G. J. Less-Common Met., 1979, 63, (1), 91 [Google Scholar]
  76. Kufudakis A., and Gardavská G. op. cit., 1979, 63, 65
  77. Maoka T., and Enyo M. Surf. Technol., 1979, 9, (3), 147; [Google Scholar]
  78. Electrochim. Acta, 1981, 26, (5), 607, 615 [Google Scholar]
  79. Harper J. M. E. Phys. Lett., 1974, 47A, (1), 69; [Google Scholar]
  80. Zimmermann M., Wolf G., and Bohmhammel K. Phys. Status Solidi A, 1975, 31, (2), 511 [Google Scholar]
  81. Lewis F. A., Johnston R. C., Witherspoon M. C., Leitch W. F. N., Thompson S. G., Obermann A., and Deane S. F. Surf. Technol., 1976, 4, (1), 89 [Google Scholar]
  82. Obermann A. op. cit., 1981, 14, 265
  83. Lewis F. A., Obermann A., and Hodes G. op. cit., 1976, 4, (1), 79
  84. Childs P. C., Howe A. T., and G M. J. Power Sources, 1978, 3, (11), 105 [Google Scholar]
  85. Lewis F. A., Hydrogen Energy Progress”, Ed. and Veziroglu T. N. Oxford, Pergamon, 1980, p. 1481 [Google Scholar]
  86. Lewis F. A., Kirkpatrick J. H., Leitch W. F. N., Magennis J., and Obermann A. Surf. Technol., 1981, 13, (2), 101 [Google Scholar]
  87. Baranowski B., Lewis F. A., Majchrzak S., and Wiśniewski R. J. Chem. Soc., Faraday Trans. I, 1972, 68, 824 [Google Scholar]
  88. Baranowski B., Lewis F. A., and Barber B. S. High-Pressure Science and Technol.”, I—Sixth airapt Conf. Ed. Timmerhaus K. D., New York, Plenum, 1978, p. 241 [Google Scholar]
  89. Carson A. W., Lewis F. A., and Schurte W. H. Trans. Faraday Soc., 1967, 63, (6), 1447 [Google Scholar]
  90. Bohmholdt G., and Wicke E. Z. Phys. Chem. (Frankfurt am Main), 1967, 56, 133 [Google Scholar]
  91. Holleck G., and Wicke E. op. cit., 1967, 56, 155
  92. Wicke E., and Meyer K. op. cit., 1969, 64, 225
  93. Lewis F. A., McFall W. D., and Witherspoon T. C. op. cit., 1973, 84, 31
  94. Witherspoon T. C., McFall W. D., and Lewis F. A. Nature Phys. Sci., 1973, 242, (115), 44 [Google Scholar]
  95. McFall W. D., Witherspoon T. C., and Lewis F. A. J. Chem. Soc., Chem. Commun., 1973, (4), 102 [Google Scholar]
  96. Maestas S., and Flanagan T. B. J. Phys. Chem., 1973, 77, (6), 850 [Google Scholar]
  97. Artman D., and Flanagan T. B. op. cit., 1973, 77, (23), 2804
  98. LaPrade M., Allard K. D., Lynch J. F., and Flanagan T. B. J. Chem. Soc., Faraday Trans. I, 1974, 70, (9), 1615 [Google Scholar]
  99. Allard K. D., Lynch J. F., and Flanagan T. B. Z. Phys. Chem. (Frankfurt am Main), 1974, 93, 15 [Google Scholar]
  100. Burch R., and Buss R. G. J. Chem. Soc., Faraday Trans. I, 1975, 71, (4), 913, 922 [Google Scholar]
  101. Artman D., Lynch J. F., and Flanagan T. B. J. Less-Common Met., 1976, 45, 215 [Google Scholar]
  102. Flanagan T. B., Gross G., and Clewley J. D. Hydrogen in Metals”, Proc. 2nd Int. Congr., Paris, 1977, Paper 1C3, Oxford, Pergamon, 1977 [Google Scholar]
  103. Sawatzky A., and Ledoux G. A. Hydrogen in Metals”, Proc. 2nd Int. Congr., Paris, 1977, Paper 1C8, Oxford, Pergamon, 1977 [Google Scholar]
  104. Holleck G. L. J. Phys. Chem., 1970, 74, (3), 503, 1957 [Google Scholar]
  105. Boes N., and Züchner H. J. Less-Common Met., 1976, 49, (1, 2), 223; [Google Scholar]
  106. Naturforsch Z. 1976, 31, (7), 760;
  107. Ber. Bunsenges. Phys. Chem., 1976, 80, (1), 22, [Google Scholar]
  108. Nakamura K. see also Z. Phys. Chem. (Frankfurt am Main), 1979, 116, 163 [Google Scholar]
  109. Pick M. A., Greene M. G., and Strongin M. J. Less-Common Met., 1980, 73, (1), 89 [Google Scholar]
  110. Pick M. A. op. cit., ref. 16, 1980
  111. Züchner H. Suppl. Trans. Jpn. Inst. Met., 1980, 21, 101 [Google Scholar]
  112. Evans M. J. B., and Everett D. H. J. Less-Common Met., 1976, 49, (1, 2), 123 [Google Scholar]
  113. Roberts M. W., Ross J. R. H., Reactivity of Solids”, Proc. 6th Int. Symp., Ed. Mitchell J. W., de Vries R. C., Roberts R. W., and Cannon P. New York, Wiley, 1968, p. 411 [Google Scholar]
  114. Frazier G. A., and Glosser R. J. Less-Common Met., 1980, 74, (1), 89 [Google Scholar]
  115. Botter F. op. cit., 1976, 49, (1, 2), 111
  116. Flanagan T. B., Lynch J. W., Clewley J. D., and von Turkovich B. op. cit., 1976, 49, (1, 2), 13;
  117. Flanagan T. B., and Lynch J. F. ibid., 1976, 49, (1, 2), 25
  118. Brodowsky H., and Poeschel E. Z. Phys. Chem. (Frankfurt am Main), 1965, 44, (3, 4), 143 [Google Scholar]
  119. Carson A. W., and Lewis F. A. Trans. Faraday Soc., Number 534, 1967, 63, (6), 1453; [Google Scholar]
  120. Burch R. see also Solid State Commun., 1969, 7, (18), 1313; [Google Scholar]
  121. Oates W. A., and Ramanathan R. Hydrogen in Metals”, 2nd Int. Congr., Paris, 1977, Paper 2A11, Oxford, Pergamon, 1977 [Google Scholar]
  122. Nuovo M., Mazzolai F. M., and Lewis F. A. J. Less-Common Met., 1976, 49, (1, 2), 37 [Google Scholar]
  123. Lewis F.A., Mazzolai F.M., and Ssebuwufu P.J.M. Suppl. Trans. Jpn. Inst. Met., 1980, 21, 313 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214082X2612027
Loading
/content/journals/10.1595/003214082X2612027
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error