Skip to content
1887
Volume 27, Issue 3
  • ISSN: 0032-1400

Abstract

Ruthenium and its complexes can be used to catalyse the oxidation, both homogeneous and heterogeneous, of a wide range of organic substrates. These include olefins, alkynes, arenes, alcohols, aldehydes, ketones, ethers, sulphides, amines, and phosphines. A wide variety of oxidants can be used under mild conditions; conversions and selectivities are usually high, and the catalyst can be easily recovered. Ruthenium can also be used to catalyse the oxidative destruction of pollutants in both gas and liquid phases.

Loading

Article metrics loading...

/content/journals/10.1595/003214083X273111125
1983-01-01
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/pmr/27/3/pmr0027-0111.html?itemId=/content/journals/10.1595/003214083X273111125&mimeType=html&fmt=ahah

References

  1. Djerassi C., and Engle R. J. Am. Chem. Soc., 1953, 75, 3838 [Google Scholar]
  2. Berkowitz L. M., and Rylander P. N. J. Am. Chem. Soc., 1958, 80, 6682. [Google Scholar]
  3. Pappo R., and Becker A. Isr. Res. Counc. Bull., 1956, 5A, 300 [Google Scholar]
  4. Sarel S., and Yanuka, Y. J. Org. Chem., 1959, 24, 2018 [Google Scholar]
  5. Rylander, P.N. Engelhard Tech. Bull., 1969,9, 135 [Google Scholar]
  6. Augustine, R. L.Oxidation” Vol. 1, ed. Marcel Dekker, New York, 1969 [Google Scholar]
  7. Yamanaka T. Kagaku Kogyo, 1979, 30, (6), 619; [Google Scholar]
  8. Chem. Abstr., 1979, 91, 1129 53 [Google Scholar]
  9. Yamanaka T. Kagaku Kogyo, 1979, 30, (7), 747; [Google Scholar]
  10. Chem. Abstr., 1979, 91, 1994 60 [Google Scholar]
  11. Lee D. G., van M., and Trahanovsky W. S. Oxidation in Organic Chemistry”, Part B, ed. Academic Press, New York, 1973 [Google Scholar]
  12. Müller P., and Godoy J. Tetrahedron Lett., 1981, 22, (25), 2361 [Google Scholar]
  13. Sharpless K. B., Akashi K., and Oshima K. Tetrahedron Lett., 1976, (29), 2503 [Google Scholar]
  14. Regen S. L., and Whitesides G. M. J. Org. Chem., 1972, 37, (11), 1832 [Google Scholar]
  15. Carlsen P. H. J., Katsuki T., Martin V. S., and Sharpless K. B. J. Org. Chem., 1981, 46, (19), 3936 [Google Scholar]
  16. Carlsen P. H. J., and Sharpless K. B.
  17. Foglia T. A., Barr P. A., Malloy A. J., and Costanzo M. J. J. Am. Oil Chem. Soc., 1977, 54, (11), 870A [Google Scholar]
  18. Kawamoto K., and Yoshioka T. European Patent Appl.21, 118; 1981 [Google Scholar]
  19. Keblys K. A., and Dubeck M. U.S. Patent 3,409,649; 1968 [Google Scholar]
  20. Schröer W.-D., and Friedrichsen W. Liebigs Ann. Chem., 1978, 1978, (9), 1648 [Google Scholar]
  21. Mitsubishi Petrochemical Co., Ltd., Japanese Patent, 80,087,739; 1980; Chem. Ābstr., 1981, 94, 103012 [Google Scholar]
  22. Holm K. H., Lee D. G., and Skattebøl L. Acta Chem. Scand., 1978, B32, (9), 693 [Google Scholar]
  23. Schroder M. Chem. Rev., 1980, 80, (2), 187 [Google Scholar]
  24. Pudel M. E., Privalova L. G., Maizus, Z. K., Revenko, L. V., Khidekel M. L., and Kalechits I. V. Neftekhimiya, 1973, 13, 64 [Google Scholar]
  25. Turner J. O., and Lyons J. E. German Patent 2,231,678; 1973 [Google Scholar]
  26. Moyer B. A., Thompson M. S., and Meyer T. J. J. Am. Chem. Soc., 1980, 102, (7), 2310 [Google Scholar]
  27. Cenini S., Fusi A., and Porta F. Gazz. Chim. Ital., 1978, 108, ( 34), 109 [Google Scholar]
  28. Gopal H., and Gordon A. J. Tetrahedron Lett., 1971, (31), 2941 [Google Scholar]
  29. Jung M. J., Metcalf B. W., Lippert B., and Casara P. Biochem., (Washington), 1978, 17, (13), 2628 [Google Scholar]
  30. Cronauer D. C., and Baumgard L. G. U.S. Patent 3,865,870; 197 [Google Scholar]
  31. Massie S. N. U.S. Patent 3,775,472; 1973 [Google Scholar]
  32. Applequist D. E., and Wheeler J. W. Tetrahedron Lett., 1977, (39), 3411 [Google Scholar]
  33. Spitzer U. A., and Lee D. G. J. Org. Chem., 1974, 39, (16), 2468 [Google Scholar]
  34. Schröder M., and Griffith W. P. J. Chem. Soc., Chem. Commun., 1979, (1), 58 [Google Scholar]
  35. Matsumoto M., and Ito S. J. Chem. Soc., Chem. Commun., 1981, (17), 907 [Google Scholar]
  36. Givens R. S., and Rademacher D. R. J. Med. Chem., 1974, 17, (4), 457 [Google Scholar]
  37. Tomioka H., Takai K., Oshima K., and Nozaki H. Tetrahedron Lett., 1981, 22, (17), 1605 [Google Scholar]
  38. Wolfe S., Hasan S. K., and Campbell J. R. Chem. Commun., 1970, (21), 1420 [Google Scholar]
  39. Gopal H., Adams T., and Moriarty R. M. Tetrahedron, 1972, 28, (16), 4259 [Google Scholar]
  40. Caputo J. A., and Fuchs R. Tetrahedron Lett., 1967, (47), 4729 [Google Scholar]
  41. Krumpolc M., and Rocek J. Org. Synth., 1981, 60, 20 [Google Scholar]
  42. Sasson Y., and Blum J. Tetrahedron Lett., 1971, (24), 2167 [Google Scholar]
  43. Dalton A. I. Jr.,, Doran H. J., and Murray, R. D. H. U.S. Patent 4,225,694; 1980 [Google Scholar]
  44. Sheng M. N. U.S. Patent 3,997,578; 1976 [Google Scholar]
  45. Mitsui Petrochemical Industries, Ltd., Japanese Patent, 80, 102, 528; 1980; Chem. Abstr., 1981, 94, 46774 [Google Scholar]
  46. Reddy K. N., Devi V., and Saiprakash P. K. Natl. Acad. Sci. Lett., (India), 1981, 4, (7), 297; [Google Scholar]
  47. Chem. Abst., 1982, 96, 85864 [Google Scholar]
  48. Descotes G., Praly J. P., and Sinou D. J. Mol. Catal., 1979, 6, (6), 421 [Google Scholar]
  49. Radhakrishnamurti P. S., and Mahapatro D. K. Ind. J. Chem., 1979, 18A, (1), 53 [Google Scholar]
  50. Smith A. B. III, and Scarborough R. M. Jr., Synth. Comm., 1980, 10, (3), 205 [Google Scholar]
  51. Howell I. V., Ledlie M. A., and Pitkethly R. C. British Patent 1,404,513; 1975 [Google Scholar]
  52. Ledlie M. A., and Howell I. V. Tetrahedron Lett., 1976, (10), 785 [Google Scholar]
  53. Tang R., Diamond S. E., Neary N., and Mares F. J. Chem. Soc., Chem. Commun., 1978, (13), 562 [Google Scholar]
  54. Tangari N., and Tortorella V. J. Chem. Soc., Chem. Commun., 1975, (3), 71 [Google Scholar]
  55. Sheehan J. C., and Tulis R. W. J. Org. Chem., 1974, 39, (15), 2264 [Google Scholar]
  56. Piatak D. M., Bhat H. B., and Caspi E. J. Org. Chem., 1969, 34, (1), 112 [Google Scholar]
  57. Piatak D. M., and Ekundayo O. Steroids, 1973, 21, 475 [Google Scholar]
  58. Ayres D. C., and Scott C. M. Environ. Sci. Technol., 1979, 13, (11), 1383 [Google Scholar]
  59. Cariati V., and Viani V. British Patent 1,549,363; 1979 [Google Scholar]
  60. Okada N., Nakanishi Y., and Harada Y. German Patent 2,735,892; 1978 [Google Scholar]
  61. Osaka Gas Co., Ltd., Japanese Patent 80,086,854; 1980, Chem. Abstr., 1980, 93, 244898 [Google Scholar]
  62. Ayres, D.C. Platinum Metals Rev., 1981, 25, (4), 160 [Google Scholar]
  63. Yang K., Scamehorn J. F., Reedy J. D., and Lindberg R. C. German Patent 2,640,906; 1977 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214083X273111125
Loading
/content/journals/10.1595/003214083X273111125
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error