Skip to content
Volume 31, Issue 4
  • ISSN: 0032-1400


Unlike other fuel cell types, the direct methanol fuel cell does not require a separate hydrogen generation system and therefore has greater commercial potential, particularly for powering portable appliances. However, the limiting factor for the cost-effective performance of such systems is the catalytic activity of the electrodes, in particular the anode. The single most active anode material is platinum, which is usually dispersed on a high surface area carbon support. It has been found that the addition of small amounts of metals such as lead, rhenium, ruthenium and tin to the platinum produces a significant increase in activity. The best of these bimetallic systems is based on a mixture of platinum and ruthenium. However, further worthwhile improvements in anode activity could result from a more fundamental understanding of the methanol decomposition reaction. In recognition of this, the Commission of the European Communities has initiated a research programme which involves collaboration between universities and industry in four member states. This article is based largely upon a paper given at the CEC–Italian Fuel Cell Workshop in Taormina, Sicily, in June 1987.


Article metrics loading...

Loading full text...

Full text loading...



  1. Cameron D. S. Platinum Metals Rev., 1978, 22,(2), 38 [Google Scholar]
  2. Kordesch K., and Marko A. Oesterr. Chem. Ztg., 1951, 52, 125 [Google Scholar]
  3. Ciprios G., Batzold J., and Lieberman M. “Advances in Energy Conversion Engineering”, A.S.M.E., 1967, 357364 [Google Scholar]
  4. Williams K. R., and Gregory D. P. J. Electrochem. Soc., 1963, 110, 209 [Google Scholar]
  5. Glazebrook R. W. J. Power Sources, 1982, 7, 215 [Google Scholar]
  6. Glazebrook R. W. Electr. Veh. Dev., 1982, 7, 18 [Google Scholar]
  7. Hampson N. A., Willars M. J., and McNicol B. D. J. Power Sources, 1979, 4,(3), 191 [Google Scholar]
  8. Attwood P. A., Dixon A. G., Houston A. C., and Short R. T. J. Chem. Tech. Biotechnol., 1984, 34A,(1), 10 [Google Scholar]
  9. McNicol B. D. 1979, 79, 93
  10. Cathro K. J., and Weeks C. H. Energy Convers., 1971, 11, 143 [Google Scholar]
  11. Vielstich W. Brighton, England, 1964, Pergamon, p. 271
  12. Kurpit S. S. 1975, 222
  13. Perry J. 1974, 26, 171
  14. Wynn J. E. 1970, 24, 198
  15. Sylwan C. Energy Convers., 1977, 17,(2/3), 67 [Google Scholar]
  16. Sylwan C. L. Energy Convers. Manage., 1980, 20,(1), 1 [Google Scholar]
  17. Tamura K. New Mater. New Processes, 1983, 2, 317 [Google Scholar]
  18. Yamaguchi J. Automot. Eng., 1983, 91,(4), 65 [Google Scholar]
  19. McNicol B. D., “Studies in Electrical and Electronic Engineering 11—Power Sources for Electric Vehicles”, Ch. 8, ed. McNicol B. D., and Rand D. A. J. Elsevier, Amsterdam, 1984 [Google Scholar]
  20. Breiter M. W. “Electrochemical Processes in Fuel Cells”, Springer Verlag, Berlin, 1969 [Google Scholar]
  21. Beden B., Lamy C., Bewick A., and Kunimatsu K. J. Electroanal. Chem., 1981, 121, 343 [Google Scholar]
  22. Kunimatsu K. J. Electron Spectrosc. Relat. Phenom., 1983, 30, 215 [Google Scholar]
  23. Wieckowski A., Sobrowski J., and Jablonska A. J. Electroanal. Chem., 1974, 55,38 3 [Google Scholar]
  24. Biegler T., and Koch D. F. A. J. Electrochem. Soc., 1967, 114, 904 [Google Scholar]
  25. Beden B., Kadirgan F., Lamy C., and Leger J. M. J. Electroanal. Chem., 1981, 127,(13), 7 5 [Google Scholar]
  26. Cathro K. J. J. Electrochem. Soc., 1969, 116, 1608 [Google Scholar]
  27. Glass J. T., Cahen G. L., Stoner G. E., and Taylor E. J. J. Electrochem. Soc., 1987, 134,(1), 58 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error